От чего зависит скорость коррозии металла
Перейти к содержимому

От чего зависит скорость коррозии металла

  • автор:

Скорость коррозии металла

В случае равномерной коррозии скорость может быть определена по формуле:

v=Δm / S•t, где

  • v — скорость коррозии, которую обычно выражают в таких единицах: г/(м 2 •ч) или мг/(см2•сут);
  • Δm — убыль (увеличение) массы;
  • S — площадь поверхности;
  • t — время;

Отметим, что весовой показатель не всегда удобен, особенно если сравнивается коррозия металлов разной плотности. В таких случаях лучше пользоваться глубинным показателем коррозии, т.е. средней глубиной проникновения коррозионного разрушения в металл.

Кроме скорости коррозии металла, к часто используемым показателям (критериям) коррозии относят:

Прямые показатели коррозии

  • убыль или увеличение массы, отнесенные к единице поверхности металла;
  • глубина коррозии;
  • доля поверхности, занятая продуктами коррозии;
  • количество коррозионных язв или точек (очагов коррозии) на единице поверхности;
  • объем выделившегося с единицы поверхности водорода или поглощенного кислорода;
  • время до появления первого очага коррозии;
  • время до появления коррозионной трещины или полного разрушения образца;
  • сила тока коррозии;
Косвенные показатели коррозии
  • изменение физико-механических свойств металла (предела прочности при испытаниях на сжатие и разрыв, относительного удлинения, отражательной способности и др.);
  • изменение сопротивления;

Глубинный показатель коррозии

∏=8,76•v/ρ, где

8,76 — коэффициент для перехода от измерения весового показателя скорости коррозии в расчете на 1 ч к глубинному показателю в расчете на 1 год (24 ч • 360=8760 ч);

v — скорость коррозии, г/(м 2 •ч);

ρ — плотность, г/см 3 ;

В том случае, если коррозия имеет местный характер, скорость ее не может быть точно охарактеризована весовым или глубинным показателем. При питтинговой коррозии необходимо определять максимальный глубинный показатель. При межкристаллитной коррозии и коррозионном растрескивании скорость коррозии количественно характеризуется механическим показателем коррозии, например, по потере прочности:

σ0 — предел прочности до коррозии;

σ1 — предел прочности после коррозии, рассчитанный по отношению к первоначальной площади сечения металлического образца;

Шкала грубой оценки коррозионной стойкости металлов

Группа стойкости Глубинный показатель коррозии, мм/год Балл
Совершенно стойкие 0,001 1
Весьма стойкие 0,001 . 0,005 2
0,005 . 0,010 3
Стойкие 0,01 . 0,05 4
0,05 . 0,10 5
Пониженно стойкие 0,1 . 0,5 6
0,5 . 1,0 7
Малостойкие 1,0 . 5,0 8
5,0 . 10,0 9
Нестойкие 10,0 10

От чего зависит скорость коррозии металла

Извлечения из классической книги

И.Л.Розенфельд, В.П.Персианцева «Ингибиторы атмосферной коррозии», М., «ХИМИЯ», 1985г.

Факторы, влияющие на скорость атмосферной коррозии

Наиболее важными факторами, определяющими скорость атмосферной коррозии являются: влажность атмосферы; состав атмосферы; суммарная длительность пребывания пленки влаги, образовавшейся на поверхности металла; ее химический состав; температура воздуха.

Влажность атмосферы. Абсолютная влажность воздуха (количество водяного пара в единице объема воздуха) при неизменных других условиях определяет толщину адсорбционной пленки, образующейся на поверхности металла. Так, например, толщина слоя влаги, образующейся на поверхности железа при относительной влажности воздуха 55%, составляет 15 молекулярных слоев, а при относительной влажности 100% — 90 – 100 молекулярных слоев.

От относительной влажности зависит и количество воды, которое сконденсируется на поверхности металла при охлаждении изделия, однако и в этом случае при последующем ее испарении коррозия при меньших относительных влажностях, например при 76%, может оказаться выше, чем при 100% влажности. Сказывается эффект саморазмешивания… Малые скорости коррозии наблюдаются лишь при относительных влажностях до 60%. Превышение этой влажности при любом количестве сконденсированной на поверхности металла влаги приводит к резкому возрастанию скорости коррозии. Однако при большом количестве сконденсированной влаги коррозия при 80%-ной относительной влажности выше, чем при 100%.

Количество же сконденсированной на поверхности металла влаги зависит от температурного перепада: чем он выше, тем больше конденсируется воды при заданной влажности.

Количество сконденсированной влаги может изменяться также от присутствия на поверхности металла посторонних веществ. Их влияние сказывается на капиллярной конденсации. Кроме того, они способны стать центрами кристаллизации. Особенно опасны вещества, отличающиеся высокой гигроскопичостью. В их присутствии изменяются значения относительной влажности воздуха, при которой наблюдается резкое возрастание скорости коррозии металлов (Hk — критическая влажность). Так, например, при наличии на поверхности железа аммонийных солей скорость коррозии резко возрастает, а влажность воздуха спускается с 80 до 50% .

Природа продуктов коррозии железа оказывает также сильное влияние на критическую влажность; для железа, покрытого продуктами коррозии, образованными в дистиллированной воде, критическая влажность равна 65%, а для морской воды критическая влажность снижается до 50% [194].

Помимо снижения критической влажности посторонние частицы, осаждающиеся на поверхности металла, могут повышать скорость разрушения металлов вследствие изменения структуры защитных пленок, а также их адгезии с поверхностью металла.

Возникновение поверхностного натяжения между твердыми частицами и продуктами коррозии может приводить к тому, что последние будут прилипать к твердой частичке, а не к поверхности металла, ослабляя этим защитные свойства образующихся продуктов коррозии. Это наблюдается также в том случае, если природа частичек такова, что они могут взаимодействовать с переходящими в раствор ионами металла с образованием растворимых продуктов коррозии вместо нерастворимых гидроокисей металлов.

Отсюда следует весьма важный вывод: возникшие по каким-либо причинам продукты коррозии даже в виде мелких очагов должны быть возможно быстрее удалены, чтобы они не способствовали дальнейшему развитию коррозии. Следует также избегать попадания посторонних частиц на поверхность изделия.

Состав атмосферы. Агрессивные свойства атмосферы по отношению к металлам определяются не только влажностью, но и теми загрязнениями, которые в нее попадают. Самыми неблагоприятными видами загрязнений являются сернистый газ и хлористый натрий. Первый попадает в атмосферу вместе с продуктами, образующимися при сжигании сернистого топлива, второй – за счет соли, уносимой ветром с поверхности океанов и морей.

Сернистый газ. С некоторой критической концентрации сернистый газ сильно увеличивает скорость коррозии таких металлов, как железо, алюминий, цинк, медь и другие. При постоянной концентрации сернистого газа в атмосфере скорость коррозии металлов возрастает с повышением относительной влажности атмосферы. Возрастание скорости коррозии металлов наблюдается и в том случае, когда в атмосфере нет сернистого газа, но поверхность металла предварительно подвергалась его воздействию. Коррозия при этом протекает так, как будто атмосфера содержит сернистый газ . такой отрицательный эффект связан с тем, что сернистый газ в присутствии адсорбированной влаги на металле образует кристаллогидраты, которые не удаляются с поверхности металла даже при откачке и способствуют возникновению и развитию коррозионного процесса. Наиболее опасными в промышленной атмосфере являются оседания на поверхности конструкции частичек угольной пыли.

Хлористый натрий. Хлористый натрий, подобно сернистому газу, весьма заметно усиливает коррозию ряда металлов в атмосферных условиях. Основной причиной ускорения коррозии хлористым натрием является образование в его присутствии растворимых продуктов коррозии вместо нерастворимых гидроокисей, возникающих под чистой пленкой влаги. Кроме того, ионы хлора препятствуют образованию пассивирующих пленок. Агрессивное действие хлористого натрия в условиях атмосферы следует также связывать с его способностью адсорбировать влагу из относительно сухих атмосфер. Уже при относительной влажности воздуха, равной 70%, хлористый атрий адсорбирует влагу, что сопровождается сильным увеличением скорости коррозии.

Из других загрязнений воздуха наиболее агрессивными являются хлор, аммиак, сероводород и углекислый газ… Не останавливаясь подробно на рассмотрении влияния этих загрязнений атмосферы на механизм и скорость коррозионных процессов, отметим то общее, что есть в действии этих соединений, а также их некоторые отличительные особенности.

Отличительной особенностью хлора является его агрессивность как во влажных, так и в относительно сухих атмосферах (Н = 42%). При высоких относительных влажностях наступает резкое возрастание скорости коррозии. Последнее связано с тем, что хлор является сильным катодным деполяризатором при высоких относительных влажностях. Кроме того, в результате образования хлористых соединений он сдвигает критическую влажность к более низким значениям.

Коррозионная активность сероводорода, подобно сернистому газу, наступает лишь при достижении определенного значения относительной влажности атмосферы. В сухой атмосфере в присутствии сероводорода коррозия цинка, кадмия, олова, алюминия, сурьмы, висмута, хрома, железа, чугуна, легированных сталей, кобальта и никеля ничтожна. Общим для рассматриваемых видов загрязнений является их более низкая (в большинстве случаев) агрессивность по сравнению с сернистым газом и хлористым натрием. Аммиак сам по себе для железа и сплавов на его основе не опасен. Однако для медных сплавов он представляет большую опасность, вызывая коррозионное растрескивание.

Продолжительность пребывания пленки влаги на поверхности металла. в атмосферах, не загрязненных заметными количествами специфических коррозионно-активных примесей, процесс атмосферной коррозии возникает и развивается лишь в том случае, если на поверхности металла присутствует пленка влаги определенной толщины (10-20 молекулярных слоев), приобретающая свойства электролита. Продолжительность развития коррозионного процесса и количество металла, превратившегося в продукты коррозии, зависит от длительности пребывания пленки электролита на поверхности металла. Чем дольше не высыхает пленка, образовавшаяся на металле, или чем чаще она возобновляется, тем дольше протекает процесс коррозии, а следовательно, при всех прочих равных условиях тем большему коррозионному разрушению подвергается металл.

Существенное значение длительности общего времени пребывания пленки влаги для коррозионного разрушения подтверждается также тем, что, например, в Батуми, где выпадает максимальное по Союзу количество осадков (число дней с росой – 68) и где, казалось бы, коррозия должна быть наибольшей, она оказывается ниже, чем, скажем, в приморских условиях Мурманска, где количество осадков значительно меньше число дней с росой – 25). Это объясняется тем, что в Батуми, где много солнечных дней, условия для удаления пленки с поверхности металла более благоприятны, чем в Мурманске. Поэтому общее время контакта металла с электролитом в Батуми значительно меньше, чем в Мурманске, а следовательно, и коррозия там меньше. Этим же эффектом можно объяснить, почему сильнее корродирует та сторона образца или конструкции, которая обращена к земле, а не та, на которую непосредственно выпадают атмосферные осадки.

Температура воздуха. Скорость коррозии с температурой обычно возрастает, поскольку с ростом температуры увеличивается кинетика электрохимических реакций, обусловливающих коррозионный процесс.

При атмосферной коррозии, протекающей . в видимых слоях электролитов, чаще всего с катодным ограничением, температура изменяет скорость процесса главным образом благодаря изменению кинетики катодной реакции восстановления кислорода, скорость которой определяется скоростью диффузии кислорода к электроду.

Поскольку коэффициент диффузии кислорода с температурой растет (коэффициент диффузии изменяется по закону D = RT / (6p r h),

где R – постоянная Больцмана; r – радиус диффундирующей частицы; h – вязкость среды), а толщина диффузионного слоя уменьшается (вследствие усиления саморазмешивания, обусловленного конвекцией), то повышение температуры должно привести к росту предельного диффузионного тока и, следовательно, скорости коррозии. Необходимо, однако, иметь в виду, что при коррозии металлов в атмосфере с изменением температуры меняется длительность контакта электролита с металлом. Поэтому общий коррозионный эффект зависит от изменения кинетики электродных реакций и от изменения времени пребывания электролита на поверхности металла.

Ввиду наличия двух факторов, действующих в прямо противоположном направлении (длительность контакта металла с электролитом уменьшается с повышением температуры, а скорость реакций, обусловливающих коррозионный процесс, увеличивается), зависимость скорости атмосферной коррозии от температуры является весьма сложной и ее не всегда легко предсказать. Если эффекты, возникающие от длительного пребывания металла в контакте с электролитом, превышают эффекты, возникающие за счет более интенсивного протекания процесса при более высокой температуре, то коррозия в районах, характеризующихся относительно низкой температурой, может быть больше, чем в районах, отличающихся высокими температурами. Однако высокие температуры, сочетающиеся с длительным пребыванием металла в контакте с электролитом, что, например, наблюдается во влажном тропическом климате, способствуют усиленной коррозии

Скорость коррозии

Скорость коррозии

Скорость коррозии — это результат воздействия коррозии на поверхность металлической конструкции за определенный промежуток времени. Скорость коррозии зависит от ее разновидности. Кроме того, скорость коррозии можно представить в виде скорости проникновения коррозии в виде увеличения её глубины за определенный промежуток времени.

Скорость коррозии зависит от большого количества факторов:
  • температурных колебаний;
  • образования продуктов коррозии;
  • фазовой и адсорбционной влаги на поверхности;
  • коррозийных веществ и отложений в атмосфере.

Для того чтобы измерить показатель скорости коррозии, ведут наблюдение за изменениями определенной величины, отражающей изменения характеристик металлических конструкций. Скорость коррозии измеряется при помощи формулы:

Где y — это величина, изменяющаяся под действием коррозии, а t — временной промежуток коррозии. Чтобы количественно определить скорость коррозии используют средние показатели коррозии.

Среди прямых показателей коррозии выделяют:
  • изменение массы в соотношении с размером коррозии;
  • показатель сопротивления;
  • токовый, механический, глубинный показатель;
  • механический показатель;
  • часть поверхности, подверженная коррозии;
  • очаги коррозии;
  • мощность коррозионного тока;
  • объем выделявшегося водорода и поглощенного кислорода;
Косвенные показатели коррозионных процессов:
  • изменения сопротивления;
  • деформация металла.
Существуют следующие коррозийные среды:
  • слабоагрессивные;
  • неагрессивные;
  • среднеагрессивные;
  • сильноагрессивные.

На скорость коррозии влияет несколько факторов окружающей среды. В помещениях с отоплением — это загрязненность и влажность воздуха. Значение коррозии в помещениях с влажностью выше критической, загрязненных хлором или сернистым газом, определяется по такой формуле:

В помещениях, которые не отапливаются, влажность воздуха изменяется в зависимости от влажности атмосферы, либо со сглаживанием и отставанием амплитуды. В таком случае применяется формула:

В условиях открытой атмосферы скорость коррозии вычисляется промежутком нахождения на поверхности металла фазовых пленок влаги. В этом случае значение коррозии рассчитывается по такой формуле:

Чтобы предотвратить распространение коррозийных процессов, необходимо проводить оценку и расчет скорости коррозии, учитывая при этом все вышеперечисленные факторы.

Компания промышленного сервиса

Адрес: Москва, Зеленоград, Савёлкинский проезд,
дом 4, этаж 21

© «ВекФорт», 2010 — 2024. Все права защищены. Копирование материалов без разрешения и ссылки на vecfort.ru запрещены.

Скорость коррозии металла: виды, расчеты, факторы влияния

Коррозией принято называть химическое разрушение металлов при взаимодействии с различными факторами окружающей среды. Этот процесс не следует путать с эрозией, которая происходит вследствие только физических причин.

Среды, под действием которых разрушается материал, принято называть коррозионными. В ходе самопроизвольного разрушения металла образуются продукты коррозии. Коррозионная стойкость, соответственно, определяется способностью противостоять воздействию разрушающих факторов окружающей среды.

Существует ряд разновидностей этого процесса, которые отличаются механизмом и характером. Механизм, по которому протекает разъедание материала, зависит от особенностей коррозионной среды и ряда других немаловажных факторов. Коррозия может быть химической или электрохимической.

В сухой газовой или жидкой среде, не проводящей электричество (спирт, метилбензол, бензин), коррозия происходит по механизму, для которого характерна гетерогенная химическая реакция с параллельным окислением металла и восстановлением окисленных компонентов среды или деполяризаторов. Такой вид взаимодействия материала с коррозионной средой называют химической коррозией.

Условия, в которых протекают процессы, легли в основу их разделения на:

  • газовую коррозию, при которой металл окисляется в газовой среде, где высокая температура не дает влаге возможности конденсироваться на его поверхности;
  • коррозию в жидких средах, которые не проводят электричество.

Электрохимический механизм коррозионного разрушения материалов имеет место в средах с ионной проводимостью. Такой вид коррозии отличается параллельным течением двух реакций, когда отдельные участки поверхности деталей становятся местом окисления металла и восстановления окисленных компонентов коррозионной среды (деполяризаторов).

Электрохимическая коррозия – это процесс, в ходе которого при растворении материала появляется электрический ток, приходят в движение ионы из электролитного раствора и электроны в структуре металла.

Средой для электрохимической коррозии служат водные растворы активного вещества (кислота, щелочь или соли). Чаще всего по этому механизму металлы корродируют в таких средах, как морская вода, земля или газ с небольшим количеством жидкости.

Понятие и виды коррозии металла

В зависимости от вида среды выделяют:

  1. Газовую коррозию, когда разрушение металла протекает химическим путем в газе.
  2. Атмосферную, протекающую в атмосфере влажных газов или на воздухе. Для такого разрушения типичен равномерный поверхностный характер.
  3. Коррозию в электролитных растворах.
  4. Почвенную или подземную коррозию металлоконструкций.
  5. Биологическую коррозию, вызванную воздействием, оказываемым на поверхность металлического изделия продуктами жизнедеятельности микробов.

Электрохимическая коррозия металла может быть двух видов:

  • Подземная электрокоррозия, происходящая из-за блуждающих токов от внешних источников.
  • Контактная коррозия металлов, когда металл разрушается при взаимодействии с другим металлическим предметом с более высоким положительным электродным потенциалом.

Расчет скорости коррозии металла

Для определения скорости равномерного корродирования материала пользуются формулой:

V = Δm / S × t, где

V – скорость процесса, измеряемая в граммах на метр квадратный в час или миллиграммах на сантиметр квадратный в сутки;

m – изменение массы;

Расчет интенсивности по весовому показателю может быть нецелесообразным

Расчет интенсивности по весовому показателю может быть нецелесообразным при необходимости сравнительного анализа коррозии двух металлов различной плотности. Для подобных случаев следует определять среднюю глубину, на которую проникли изменения.

Помимо скорости коррозии металла, нередко пользуются другими показателями:

  • изменение массы, соотнесенное с показателем площади;
  • глубина проникновения;
  • соотношение чистой поверхности с той, что уже затронута процессом;
  • число очагов коррозионного разрушения на единицу площади;
  • количество выделяемого водорода или поглощаемого кислорода в пересчете на площадь;
  • время, потребовавшееся на формирование первого очага изменений;
  • период, потребовавшийся на коррозионное растрескивание или полное разрушение изделия;
  • сила коррозионного тока.

Скорость коррозии металла в год

Скорость коррозии металла в год можно рассчитать по формуле:

8,76 – коэффициент для перерасчета весового показателя на глубинный за 1 год (24 ч × 360 = 8 760 ч);

v – скорость коррозии, г/м2 ч;

ρ – плотность, г/см3;

Если разрушение происходит неравномерно, то нецелесообразно определение его скорости при помощи весового коэффициента и показателя глубинности процесса. Скорость коррозионного изъязвления определяется по максимальной глубине. Межкристаллитное разъедание и появление трещин требуют количественной оценки по косвенным показателям, таким как потеря прочности:

Kσ = (σ0 – σ1 / σ0) × 100 %, где

σ0 – предел прочности до коррозии;

σ1 – предел прочности после коррозии, отнесенный к первоначальному поперечному сечению детали.

Факторы, влияющие на скорость коррозии металла

Интенсивность разъедания материала деталей при их эксплуатации может зависеть от разных факторов:

  • внутренних, на которые влияют как физика и химия объекта, так и его внутреннее строение, качество механической обработки поверхности, внутренние напряжения и т. д.;
  • внешних, то есть окружающих условий, интенсивности движения окружающего вещества, химических особенностей, нагрева, присутствия субстанций, угнетающих или стимулирующих реакции и многих других;
  • механических, заключающихся в появлении трещин, циклических нагрузках, разрушающих материал, кавитационной и появляющейся при разрушении оксидной пленки от трения коррозии и пр.;
  • конструктива металлических изделий.

Факторы, влияющие на скорость коррозии металла

Среди наиболее важных показателей, оказывающих влияние на темпы коррозионного разрушения материала, следует назвать:

  1. Термодинамическую устойчивость, которая в водном растворе определяется по справочным диаграммам Пурбе. Для этого нужно отложить по оси абсцисс pH коррозионной среды, а по оси ординат значение окислительно-восстановительного потенциала, сдвиг которого в сторону увеличения говорит о большей устойчивости металла. В среднем, она может быть определена как нормальный равновесный потенциал.
  2. Атомный номер, уменьшение которого связано с возрастанием скорости процесса. Наименьшая коррозионная стойкость свойственна щелочным и щелочноземельным металлам.
  3. Кристаллическую структуру, которая сказывается на коррозионной стойкости по-разному. От равномерности распределения фаз в целом зависит равномерность коррозионного разрушения металлов. Так, при неоднородном распределении коррозия образует очаги. В агрессивных средах на переходах от одной фазы к другой образуется разность потенциалов. Крупное зерно в структуре металла не способствует его более быстрому разрушению, но является фактором, благоприятствующим избирательной коррозии.
  4. Различную энергию атомов в структуре металла. Расположенные по углам граней микроскопических неровностей частицы с более высоким энергетическим потенциалом активно участвуют в химическом разрушении, становясь его центрами. С учетом сказанного, особое внимание следует уделять механической обработке изделий, их шлифовке, доводке и полировке. Повышенная коррозионная устойчивость при этом объясняется, в том числе и тем, что на гладкой поверхности формируется более равномерная и плотная оксидная пленка.

При химическом коррозионном разрушении металла многое зависит от концентрации электрически заряженных атомов водорода, которые сказываются на:

  • растворимости продуктов коррозии;
  • формировании защитной пленки из окислов;
  • скорости коррозии.

В кислых растворах с рН в диапазоне от 4 до 10 на скорость коррозии металла в значительной степени влияет то, насколько интенсивно атомарный кислород достигает его верхних слоев. По мере увеличения щелочности среды на первых порах происходит пассивация поверхности материала, снижающая темпы разрушения. Далее при значениях pH от 13 и более скорость коррозии нарастает за счет разъедания защитного слоя из оксидов.

Различные металлы и сплавы по-разному меняют свою коррозионную стойкость при изменении pH-среды. Наибольшую устойчивость к разрушению в кислых растворах проявляют платина, золото и серебро. Цинк и алюминий интенсивно корродируют как в кислой, так и в щелочной среде, а никель и кадмий быстро разрушаются в кислотных растворах, но проявляют стойкость к действию щелочных.

Если среда нейтральна, на скорость разрушения главным образом влияют химические свойства солей и их процентное содержание:

  • гидролиз соли в коррозионной среде сопровождается образованием ионов, активирующих или замедляющих процесс коррозии;
  • скорость разрушения можно увеличить, внося в раствор добавки, повышающие кислотность типа кальцинированной соды, или уменьшить, повышая щелочность добавлением, например, хлористого аммония;
  • хлориды и сульфаты, вносимые в раствор, активируют процесс коррозии до определенного процентного содержания, по достижении которого начинают ингибировать его, снижая растворимость кислорода.

Соли вроде фосфорнокислого железа способствуют формированию труднорастворимой пленки, защищающей материал от коррозии. Этим свойством пользуются при производстве нейтрализаторов ржавчины.

Способы защиты от коррозии металла

В зависимости от преобладающих механизмов разрушения, устойчивость окрашенных поверхностей к коррозии может быть различна. Активное химическое воздействие среды заметно меняет разность потенциалов между сердцевиной металлической детали и ее поверхностью. Возникающие из-за этого коррозионные токи стимулируют повреждение. Так разрушаются, к примеру, стальные трубы в проложенных под землей магистралях. Защитить такие изделия с помощью краски невозможно.

Покрытие металлами

Иначе обстоят дела при нанесении металлического покрытия с отрицательным электролитическим потенциалом в отношении окислительно-восстановительных реакций. Если преобладает окисление, стальные детали хорошо защищает покрытие на основе алюминия и цинка, так как эти элементы обладают меньшей кислородной активностью.

Способы защиты от коррозии металла

Цинкованием и алитированием часто защищают стальные изделия, работающие в кислых средах. С помощью окрашивания здесь решают в основном эстетические задачи.

Восстановительная среда требует защиты с помощью покрытий из металлов, располагающихся «справа» от водорода, тут идут в дело покрытия из меди или благородных металлов. Высокая стоимость меднения не позволяет применять его широко, речь обычно идет о защите малых площадей. В таких случаях на помощь приходят лакокрасочные покрытия.

Окрашивание

Защита, которую обеспечивают краски, осуществляется за счет наличия в их составе ингибиторов коррозии. Формула таких покрытий разрабатывается с учетом свойств среды и замедляет образование ржавых пятен. Благодаря эластичности современные краски также эффективно справляются и с провоцирующими коррозию поверхностными натяжениями.

Рекомендуем статьи

  • Арматурная сталь: характеристики, виды, сферы применения
  • Мартенситная сталь: характеристики, сферы применения
  • Катодное покрытие: виды получения и сферы использования

Для увеличения антикоррозионных свойств в состав краски вводят полимеры на основе кремнийорганических соединений, повышающие устойчивость металла к температурным колебаниям, воздействию влаги и другим атмосферным факторам. К недостаткам подобных покрытий следует отнести:

  • токсичность;
  • низкую эффективность в отношении электролитического разрушения.

Сказанное выше подчеркивает особую важность правильного подбора красящих защитных составов и индивидуального подхода к защите металлических деталей и узлов от воздействия факторов окружающей среды.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *