Как работает ограничитель импульсных напряжений
Перейти к содержимому

Как работает ограничитель импульсных напряжений

  • автор:

Как работает ограничитель импульсных перенапряжений?

Компания «Новатек-Электро» предлагает качественные ограничители импульсного перенапряжения с гарантией 5 лет. Вы можете выбрать подходящий ограничитель из серии ОПН-М на сайте novatek-electro.ru, а также заказать подходящий сменный картридж для замены вышедшего из строя. Цена на ограничители импульсных перенапряжений на нашем сайте – от 1400 рублей, она зависит от выбранной модели. Ограничители серии ОПН-М выпускаются в 1,2,3,4 полюсном исполнении.

Ограничитель импульсных перенапряжений: применение

Для чего нужен ограничитель импульсных перенапряжений? Ограничитель импульсных перенапряжений предназначен для защиты внутренних систем электроснабжения и оборудования зданий от грозовых и коммутационных перенапряжений. Ограничители позволяют сохранить оборудование от повреждений и сэкономить средства, которые могут понадобиться на ремонт поврежденной техники. Чаще всего устройство устанавливают в учетно-распределительных щитах.

Ограничитель импульсных перенапряжений: принцип работы

Как работает ограничитель импульсных перенапряжений? Принцип работы устройства – отвод импульсов напряжения на землю. Прибор снижает уровень перенапряжения до установленной при калибровке нормы. В основании устройства есть сменный картридж. Цвет индикатора в нем изменится с зеленого на оранжевый, если прибор среагировал на перенапряжение и обезопасил сеть от него. После этого нужно поменять картридж на новый.

Ограничитель импульсных перенапряжений: где заказать?

Купить ограничитель импульсных перенапряжений и заказать доставку транспортной компанией вы можете на нашем сайте novatek-electro.ru. Помочь выбрать подходящее устройство вам могут наши специалисты, связаться с которыми можно по номеру: +7 (499) 681-73-89 или +7 (495) 401-64-46. Также вы можете задать вопрос под наименованием интересующего товара. Мы работаем с частными и с юридическими лицами, предлагаем специальные условия для дилеров.

Зачем нужны устройства защиты от импульсных перенапряжений в доме?

Порой в электрической сети внезапно появляется большой кратковременный скачок напряжения, который принято называть импульсным перенапряжением.

Время прохождения импульсного перенапряжения обычно составляет считаные миллисекунды, однако даже столь короткого времени достаточно, чтобы повредить линию электропередач и подключённые к неё электроприборы. Для защиты от данного скачка напряжения принято использовать устройства защиты от импульсных напряжений (УЗИП).

Причины появления импульсных перенапряжений

Существует две основные причины, которые могут привести к возникновению импульсного перенапряжения: природная и технологическая. Для первого варианта причиной возникновения перенапряжения является молния, которая попадает в линию электропередач или в молниезащитную конструкцию. В случае технологической причины, появление импульсного перенапряжения случается из-за коммутационной перегрузки на трансформаторной подстанции. Стоит отметить, что независимо от причины появления импульсного перенапряжения, все подключенные к ней электроприборы будут находится в значительной опасности. Поэтому для создания эффективной защиты от данного явления, стоит устанавливать устройства защиты от импульсных перенапряжений (УЗИП) в вашем доме.

Что из себя представляет УЗИП

Обычно УЗИП имеет в своей конструкции как минимум один нелинейный элемент. Можно делать подключение внутренних частей следуя определённой конфигурации, либо используя другие способы (фаза-земля, ноль-земля, фаза-фаза, фаза-ноль). Также нужно помнить, что установка УЗИПа в частном доме должна происходить после вводного автомата, который должен соответствовать нагрузке цепи. Согласно ПУЭ, на всех зданиях с предусмотренной системой молниезащиты, в тех домах, в которых электроснабжение проходит по ВЛ, а также в регионах, с общей продолжительностью грозовых периодов больше 25 часов в течении года, защита от перенапряжения должна стоять в обязательном порядке!

Виды УЗИП
  • Ограничивающие.
  • Комбинированные.
  • Коммутирующие.
Ограничители импульсных перенапряжений

Ограничители импульсных перенапряжений (ОПН) пришли на смену громоздким и устаревшим разрядникам. Главная особенность ОПН является наличие в конструкции варистора. Варистор представляет собой некий резистор, у которого значение сопротивления зависит от величины напряжения нелинейно, т.е. при значительном повышении напряжения до определённого значения, величина сопротивления варистора сильно(нелинейно) снижается, и величина тока при этом значительно возрастает, что в свою очередь понижает напряжение дол номинального значения. После того, как напряжение вернулось к номинальному значению, варистор возвращается в нормальное состояние, которое было до начала появления перенапряжения.

Пример ВАХ варистора ниже:

Ограничитель импульсных перенапряжений типа ОПС1:

Коммутирующие защитные аппараты

Основным представителем коммутирующих аппаратов считаются разрядники. Конструктивно разрядники обычно представляют собой два электрода, между которыми расположен воздушный промежуток и дугогасительное устройство. При значительном повышении напряжения происходит пробой между электродами и возникает искра, которая тут же гасится в дугогасительной камере, и в итоге следствием работы разрядника становится падение значения напряжения на электродах после пробоя.

Комбинированный УЗИП

УЗИП комбинированного типа включает в себя возможности ограничивающих и коммутирующих аппаратов. Данные устройства способны как ограничить рост разности потенциалов, так и коммутировать их. Также при надобности данные устройства способны одновременно выполнять обе эти функции.

Категории УЗИП

УЗИП можно разделить на три класса:

  • Устройства I класса ставят на вводе питающей сети в здание. Они предназначены для защиты от прямого влияния грозового разряда, когда электрический разряд попадает в молниезащиту или линию электропередач.
  • Устройства II класса монтируются и подключаются к сети в распределительных щитах после УЗИП I класса. Они устанавливаются в качестве дополнительной защиты от импульсных скачков напряжения, вызванных коммутацией или попаданием молнией, которые не были устранены УЗИП I класса.
  • Устройства III класса применяют для защиты чувствительного электронного оборудования, и устанавливаются они как раз возле защищаемого объекта. Применяются для защиты от импульсных перенапряжений появившихся в следствии остаточных бросков напряжения и несимметричным распределением напряжения между фазой и нейтралью. Также могут применятся как фильтры высокочастотных помех. Обычно данные УЗИП ставятся после УЗИП I и II класса.

Для полной защиты вашего электрооборудования от импульсных перенапряжений рекомендуется использовать совместно все три класса УЗИП.

Вы можете купить ограничители импульсных перенапряжений производства компании IEK прямо у нас на сайте по ссылке https://www.volta.com.ua/ogranichiteli-impulsnykh-perenapryazheniy/

Подключение УЗИП

УЗИП может подключаться как в однофазную, так и в трёхфазную сеть. Ниже представлены схемы подключения УЗИП к сети.

Подключение ограничителя импульсных перенапряжений ОПС1:

В итоге в любом представленном способе подключения УЗИП, весь избыточный ток, который появляется при импульсном перенапряжении идёт по общему защитному проводу или на заземление, не оказывая воздействия на установленное электрооборудование и линию.

Ограничитель импульсных перенапряжений

ограничитель_перенапряжений_ОПН ограничитель перенапряжений шнайдерВиды и принцип работы ограничителя перенапряжения

Ограничители перенапряжения – это самый лучший и надежный способ обеспечения безопасности при доставке электрической энергии с сохранением ее параметров в норме.

  • максимальный показатель действующего напряжения – наибольшая величина напряжения, которая позволяет ОПН остаться в рабочем состоянии без временных ограничений в момент перенапряжения;
  • номинальный показатель напряжения, которое устройство может выдерживать около 10 мин;
  • проводимость токов – показатель тока, который соответствует цепи варисторов в ситуации воздействия напряжения номинальных показателей;
  • номинальный показатель разрядного тока определяет классификацию ОПН во время гроз;
  • показатель тока (расчетный ток) в момент коммутационных перенапряжений;
  • пропускная способность токов (аналогична классу разряда электролинии);
  • степень устойчивости к КЗ с сохранением изоляции.

Предотвратить ситуацию возникновения коротких замыканий и обеспечить безопасность своего дома или квартиры – прямая обязанность хозяев. Сегодня это не составляет никакого труда, поскольку огромное разнообразие защитного оборудования в свободном доступе продается в специализированных магазинах. В торговой сети «Планета Электрика» Вы можете приобрести ограничители перенапряжений (ОПН) от таких известных производителей, как ABB, Legrand, Schneider Electric, SIEMENS, КЭАЗ и др.

Трансформаторные подстанции высочайшего качества

На современных объектах индивидуального строительства (коттеджи, дачные дома и т. д.) требуется применение повышенных мер электробезопасности. Это связано с высокой энергонасыщенностью, разветвленностью электрических сетей и спецификой эксплуатации как самих объектов, так и электрооборудования. При выборе схемы электроснабжения, типа УЗО и распределительных щитков следует обратить внимание на необходимость использования устройств защиты от импульсных перенапряжений ( УЗИП ), которые следует устанавливать до УЗО.
Ограничители импульсных перенапряжений (УЗИП) предназначены для защиты внутренних распределительных цепей жилых и общественных зданий от грозовых и коммутационных перенапряжений.
Конструктивно ограничители выполнены в виде стандартных модулей шириной 18 мм для установки на монтажную рейку и состоят из основания — контактной колодки и сменного функционального модуля. Сменный модуль содержит твердотельный композитный варистор из карбида цинка и механизм визуального контроля степени «износа» варистора с «аварийным» предохранителем.
Карбид цинка обладает свойством практически мгновенно снижать свое сопротивление в тысячи раз при появлении на выводах сменного модуля напряжения, превышающего предельно допустимую величину.

Проверка исправности ограничителя

Проверку исправности ограничителя в процессе эксплуатации производить следующим образом:
— по визуальному индикатору проверяют степень «износа» (если индикатор затемнен более, чем на 3/4, то его необходимо заменить);
— отсоединить ограничитель от питающей сети и подсоединить к мегомметру напряжением 1000 В;
— замерить сопротивление ограничителя, которое должно лежать в диапазоне 0,1…2 мОм. Если сопротивление ограничителя находится вне указанного диапазона, ограничитель должен быть заменен.

Номинальное рабочее напряжение, В

Максимальное рабочее напряжение, В

Номинальный разрядный ток 8/20 мкс, кА

Максимальный разрядный ток 8/20 мкс, кА

Уровень напряжения защиты, не более, кВ

Классификационное напряжение, В

Сечение присоединяемых проводов, мм кв.

Источники импульсных перенапряжений

В летний период грозовой разряд в воздушную линию вызывает появление перенапряжений в десятки киловольт, носящих характер бегущих волн с большой крутизной и временем возрастания от нуля до максимума 1,0…8,0 мкс. Попав во внутреннюю распределительную сеть здания разряд может вызвать пробой, возгорание изоляции и выход из строя электрооборудования. Аналогичные последствия могут вызвать коммутационные перенапряжения, возникающие при переключениях на подстанциях или при пуске и отключении мощных электропотребителей.
С помощью ОПС1 можно создать весьма эффективную и долговременную защиту объекта. Одним из основных условий при этом является наличие контура заземления, а для производственных помещений — и системы выравнивания потенциалов; ведь, несмотря на малую длительность, грозовой разряд несет значительную энергию. Максимальное пиковое значение тока разряда может достигать 100 кА, и при отсутствии выравнивания потенциалов вполне возможно возникновение опасного шагового напряжения. Трехступенчатая система защиты внутри здания позволяет плавно понижать опасный импульс перенапряжения «по ходу» в сторону потребителя до безопасной величины путем отбора и «слива» в землю части энергии быстродействующими разрядниками каждой ступени. При установке разрядников следует учесть, что последовательная (селективная) работа ступеней защиты будет обеспечена, если расстояние между ступенями по воздушной и кабельной цепям составляет не менее 7…10 м. В этом случае, при появлении бегущей волны разряда, индуктивность участка цепи будет создавать необходимую постоянную времени задержки нарастания напряжения.
Расстояние от разрядников, установленных в абонентском щите потребителя, до самой удаленной нагрузки не должно превышать 30 м.
Подключение к фазным и нулевой шинам во всех трех ступенях производят до коммутационной аппаратуры и аппаратуры защитного отключения. Длина проводников, соединяющих разрядники с PEN или РЕ проводником должна быть минимальной, а их сечение не менее 25 мм2.

Классификация электрооборудования по стойкости к перенапряжениям

Номинальное импульсное выдерживаемое напряжение, кВ

Специальное оборудование, которое, будучи присоединено к существующим электроустановкам зданий, нуждается в дополнительных устройствах защиты от импульсных перенапряжений. УЗИП могут быть встроены в оборудование категории 1 или расположены между этим оборудованием и остальной частью электроустановки (например, персональные компьютеры, которые подключены к питающей сети через удлинители со встроенными УЗИП).

Оборудование, которое присоединяют к существующим электроустановкам зданий посредством штепсельных розеток и других аналогичных соединителей (например, бытовые электроприборы, радиоэлектронные приборы, переносной инструмент).

Оборудование, установленное внутри зданий, которое составляет часть конкретной электроустановки здания и доступно для обычных лиц и необученного персонала. Примеры такого оборудования — распределительные щитки, проводка, выключатели и розетки, электроплиты.

Оборудование, установленное вблизи от электроустановок зданий (внутри или снаружи) перед главным распределительным щитом, которым может быть вводно-распределительное устройство для многоэтажных зданий или квартирный щиток для индивидуальных зданий (например, электрические счетчики, первичные аппараты защиты от сверхтоков).

Области применения 0ПС1 в соответствии с классификационным напряжением

Назначение и место установки 0ПС1

Первая ступень защиты от прямых или косвенных грозовых разрядов в ЛЭП на вводе в объект. Устанавливают на вводе в здание во вводно-распределительном устройстве (ВРУ) или в главном распределительном щите (ГРЩ)

Вторая ступень защиты внутренних распределительных цепей объекта от грозовых разрядов и коммутационных перенапряжений. Устанавливают в распределительные щиты.

Третья ступень защиты электрооборудования объекта от остаточных грозовых и коммутационных перенапряжений. Устанавливают в непосредственной близости электропотребителей (электроприборов).

Установка УЗИП в сети TN-C-S 220/380 В

Для того, чтобы надежно защитить объект от воздействия любого вида перенапряжений, в первую очередь необходимо создать эффективную систему заземления и выравнивания потенциалов с системой электропитания TN-S или TN-C-S. Это важно не только с точки зрения защиты от импульсных перенапряжений, но и для защиты людей от поражения электрическим током (возможно применение УЗО). Следующим шагом должна стать установка защитных устройств. При установке защитных устройств необходимо, чтобы расстояние между соседними ступенями защиты было не менее 10 м по кабелю электропитания.

Выполнение этого требования очень важно для правильной работы (координации срабатывания) защитных устройств. В момент возникновения в силовом кабеле импульсного грозового перенапряжения за счет увеличения индуктивного сопротивления металлических жил кабеля при протекании по ним импульса тока на них возникает падение напряжения, которое оказывается приложенным к первому каскаду защиты. Таким образом достигается его первоочередное срабатывание (обеспечивается необходимая временная задержка в нарастании импульса перенапряжения на следующей ступени защиты).

Особенностью вольт-амперной характеристики варистора является наличие участка малых токов (от нуля до нескольких миллиампер), в котором находится рабочая точка варистора и участок больших токов (до тысяч ампер), который в ряде случаев называют туннельным.
Туннельный участок во многом определяет функциональные свойства и, в частности, напряжение ограничения, т.е. максимальное импульсное напряжение, воздействующее на защищаемое электрооборудование при шунтировании его варистором. Одной из характеристик варистора является классификационное напряжение (Uкл). В качестве классификационного указано напряжение при токе 1,5 мА.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *