Как рассчитать звуковую мощность
Перейти к содержимому

Как рассчитать звуковую мощность

  • автор:

Как выбрать акустическую систему

Акустические системы или в просторечии колонки бывают трех типов: профессиональные, домашние и портативные. Профессиональные используются, например, в студиях звукозаписи и призваны решать специализированные задачи. Поэтому использовать их дома особого смысла нет. Портативные же акустические системы при всем желании не могут дать высокое качество звука, зато позволяют прослушивать музыку в любом месте. Акустика для дома — это промежуточный вариант, в котором меломаны и любители посмотреть фильм с хорошим звуком найдут для себя подходящее оборудование.

В этой статье мы разберем основные параметры, которые влияют на выбор акустики для дома.

08 февраля 2024

Расположение акустической системы

Расположение акустической системы в доме

Выбор акустической системы для дома начинается с того, как будут располагаться колонки. В зависимости от размещения в пространстве акустические системы делятся на напольные, полочные, настенные и встраиваемые.

Полочные системы вопреки своему названию устанавливаются на специальные стойки. Если установить такие колонки на столе или на обычной полке, колонки будут резонировать с поверхностью, чего звук станет сильно хуже. способа размещения полочные системы не позволяют сэкономить место в квартире, хотя именно на небольшие помещения они и рассчитаны. Полочная акустика отлично подходит для помещений площадью около 20 м².

Есть мнение, что полочная акустика не дает такой качественный бас, как это делает напольная. Однако это миф. Звучание баса зависит от динамиков и расположения акустики в комнате, а не от формата колонки. В небольшом помещении хорошая полочная акустика способна дать хорошие басы, в то время как мощная напольная система может чрезмерно «басить» — в маленькой комнате будет ощущаться неприятное на слух гудение.

Напольные акустические системы подойдут для помещений от 20 м², в которых смогут раскрыть свой потенциал. Напольные колонки как правило более мощные и более требовательные к усилителю. Слабый усилитель или ресивер просто даст колонкам полностью проявить себя.

Полочные или напольные системы — какую акустику выбрать?

Одно из главных отличий обеих систем — . Напольные акустические системы зачастую большого размера, поэтому могут выдавать более качественный бас. Выбор полочной акустики будет хорошим решением для небольшого помещения — небольшие колонки как правило дешевле, так зачем переплачивать за мощность, которая не нужна на маленькой площади.

Еще одно важное отличие — это чувствительность. Напольная акустика как правило более чувствительна по сравнению с полочной. Это значит, что при той же мощности напольные колонки будут играть громче. Подробнее про чувствительность колонок и влияние этого параметра на звук.

Напольные системы могут скорее подойти тем, у кого дома есть маленькие дети или животные. Это связано с тем, что случайно опрокинуть стоящую на полу колонку практически невозможно, а вот стойку на тонкой ножке — запросто. Однако обратите внимание на рекомендации производителя по расстоянию от стены. Хорошая напольная акустика может требовать до метра свободного расстояния, чтобы звук был чистым и качественным. В одной из наших статей вы можете подробно ознакомиться о том, на что следует обратить внимание при выборе напольной акустики. Если пространство или расположение мебели не допускают свободного расстояния между стеной и колонкой, возможно, стоит выбрать потолочную или настенную акустическую систему.

☝ Совет: не ставьте колонки вплотную к стене. Это касается как напольных, так и полочных систем. слишком близкого расположения к стене качество звука сильно упадет. Минимальное расстояние до стены должно быть указано в спецификации колонок.

Настенные акустические системы пригодятся в небольшом помещении. Их конструкция позволяет крепить колонку непосредственно на стене без потери качества звука. Однако небольшого размера таких колонок не стоит ожидать от них большой мощности и хорошего баса. Часто настенные колонки используются как часть домашнего кинотеатра в небольшой комнате.

Встроенные акустические системы монтируются в потолок или стены. Их часто можно встретить в санузлах и ванных комнатах, а еще чаще в кафе и ресторанах. Благодаря своей конструкции встроенные системы позволяют сэкономить место, однако как правило они будут звучать хуже, чем напольные или полочные системы за ту же цену.

Пассивные и активные акустические системы

Пассивная акустика только воспроизводит звук, поступающий с усилителя, в то время как у активной акустики усилительная часть установлена внутрь корпуса. Может показаться, что выбор активной акустики будет более удобным решением, но это не совсем так.

Пассивная акустика оставляет простор для экспериментов. Меняя другое оборудование в цепи, например, усилитель или сабвуфер, можно добиться принципиально другого звучания. Однако, чтобы получить качественный звук, придется приложить усилия и правильно подобрать и настроить компоненты всей цепи.

Активная же акустика не дает возможности экспериментировать со звуком и улучшить звучание, меняя компоненты системы. При этом такая акустика работает что называется из коробки и сразу готова воспроизводить музыку в неплохом качестве. Это неплохой вариант для прослушивания музыки в фоновом режиме в небольшом помещении: можно раздать музыку с телефона и не думать о том, куда поставить усилитель. Подробнее про особенности выбора между активной и пассивной акустики

Открытые и закрытые акустические системы

Открытая и закрытая акустика представляют два основных типа конструкции звуковоспроизводящих устройств, и каждая из них обладает своими характеристиками и применением.

Открытая акустика, или динамик с открытым ящиком, представляет собой дизайн, при котором задняя сторона динамика имеет открытое соединение с внешней средой. Это создает естественное и открытое звучание, но также может привести к тому, что звуковые волны могут взаимодействовать с окружающей средой, влияя на общий опыт прослушивания.

Закрытая акустика, или динамик с закрытым ящиком, имеет закрытую заднюю сторону, что создает изолированное пространство внутри акустического ящика. Этот дизайн обеспечивает более точное управление звуковыми волнами и часто приводит к более четкому и фокусированному звучанию. Однако закрытая акустика может потребовать более мощного усиления для достижения того же уровня громкости, чем открытая.

☝️ Выбор между открытой и закрытой акустикой зависит от предпочтений слушателя , а также конкретного контекста использования. Открытая акустика часто используется в домашних аудиосистемах для создания естественного и пространственного звучания, в то время как закрытая акустика может быть предпочтительной в студийных условиях, где важна максимальная контрольность звука.

Как правильно выбрать акустику к усилителю

Как правильно выбрать акустику к усилителю

Чтобы выбрать акустическую систему для дома и добиться наилучшего звучания, нужно правильно сочетать колонки и усилитель. При их сочетании нужно учитывать сопротивление и мощность.

  • Сопротивление (или импенданс). В колонках обычно встречается сопротивление от 4 до 8 Ом. Это значение должно соответствовать диапазону, указанному в спецификации усилителя.
  • Мощность. В колонках указывается мощность, которую они способны выдержать, а в усилителе, которую он способен выдать. Также в спецификации колонок можно найти рекомендуемую мощность усилителя, например, от 30 до 130 Вт. Мощность колонок и усилителя должна примерно совпадать. Если мощность усилителя значительно превышает мощность колонок, могут пострадать динамики. Если усилитель слишком слаб для колонок, то для достижения громкого звука придется выкручивать ручку на максимум. этого усилитель будет перегреваться и выдавать отрывочный сигнал и искажения.

Еще один важный параметр при подборе акустической системы — это чувствительность. Этот параметр говорит о том, как громко будет звучать колонка на расстоянии 1 м при подаче мощности 1 Вт. При сравнимой мощности разных колонок громче звук будет у колонки с большей чувствительностью. Это не значит, что чем выше чувствительность, тем лучше. Но колонки с высокой чувствительностью будет звучать хорошо и громко, даже при не очень мощном усилителе. В нашей статье — Выбираем усилитель, вы можете подробнее ознакомится со всеми тонкостями и нюансами выбора.

Про сочетаемость акустической системы и усилителя следует помнить и при распределении бюджета. Например, нет никакого смысла покупать дорогие и мощные колонки в пару к дешевому усилителю или наоборот. Хорошее оборудование будет только подсвечивать недостатки менее качественного.

☝ Совет: акустическая система и усилитель должны быть одного класса. Общее звучание зависит от качества оборудования во всей цепи. Если купить хорошие колонки и дешевый усилитель, он просто не позволит акустической системе раскрыть весь ее потенциал.

Способ использования акустики

Выбор акустической системы и количества колонок зависит от того, как именно она будет использоваться.

Для просмотра фильмов с эффектом звук вокруг потребуется аудиосистема из нескольких колонок и сабвуфера, или попросту музыкальный центр, советы по выбору котого можно почитать в этой статье или познакомится с понятием — саундбар, позволяющим насладится таким фильмом, каким его задумал режиссер, при этом затрачивая минимум пространства.

Для прослушивания музыки в отличном качестве потребуется стереосистема из двух колонок, так как большинство аудиозаписей кодируются именно в виде стереосигнала.

Для фонового прослушивания музыки дома или в офисе будет достаточно пары полочных колонок. Это может быть активная акустика, которая позволит обойтись без усилителя и сэкономить место.

Материал корпуса акустической системы

Материал корпуса акустической системы

Главное требование к корпусу акустической системы — прочность и жесткость. При звучании корпус не должен резонировать, иначе это будет слышно при прослушивании музыки. Чаще всего корпуса колонок изготавливаются из дерева, ДСП и пластика.

Дерево часто считается лучшим материалом для звукового оборудования по аналогии с музыкальными инструментами. На самом же деле в отличие от, скажем, гитары, в колонках сам корпус звучать не должен. Поэтому деревянный корпус акустики вряд ли будет сильным преимуществом, а вот на стоимость повлияет существенно.

ДСП — средний вариант между деревом и пластиком. Оптимален по стоимости и качеству звучания.

Пластика или даже стекла в корпусе колонок бояться не стоит. Как мы уже сказали, главное требование к корпусу колонки — это жесткость и отсутствие вибрации. Если это достигается в пластиковом корпусе, то проблем со звучанием не будет.

Мощность и диапазон частот акустической системы

Суммарная мощность акустической системы говорит о том, насколько громко колонки будут звучать при правильно подобранном усилителе. Как мы уже писали, если сам по себе усилитель недостаточно мощный для колонок, то добиться максимального и качественного звучания не выйдет.

При выборе акустической системы и усилителя можно руководствоваться двумя факторами:

  1. Мощность усилителя должна быть чуть меньше суммарной мощности колонок.
  2. Мощность акустической системы должна соответствовать размеру помещения: 50 Вт для помещений площадью до 20 м², 50–100 Вт для площади 20–30 м², более 100 Вт для больших помещений и открытого воздуха.

☝ Что такое акустика? — High Fidelity, то есть «высокая точность». Этим термином обозначают точность, с которой акустика воспроизводит попадающий на нее сигнал. В идеале звук, переходя на колонки, не должен искажаться, но на практике это неизбежно. Маркировка означает, что это искажение минимально и акустика правильно воспроизводит все исходные частоты.

Поэтому при выборе акустики не так важно, какой диапазон частот воспроизводят колонки. Гораздо важнее, насколько точно колонки воспроизводят эти частоты по сравнению с тем сигналом, который они получили. Уровень этих искажений можно увидеть на графике АЧХ— амплитудно-частотной характеристики. К сожалению, в паспорте колонок этого графика нет, но при желании и удаче график для конкретной акустики можно найти в интернете. Мы так же разобрали основные особенности Hi-Fi и ее отличия от Hi-End акустики.

Тем не менее знать диапазон воспроизводимых частот важно. Например, если минимальная частота для акустики — это 60 Гц, то она практически не сможет воспроизводить басы. Это значит, что в комплект к такой акустике понадобится сабвуфер.

☝ Как проверить акустические системы. На звучание акустической системы оказывают влияние сразу множество факторов: прежде всего это расположение в пространстве, сочетаемое оборудование и объем помещения. Поэтому единственный способ убедиться, что звучание вам подходит, это собрать полный комплект у себя дома и включить хорошо знакомую вам композицию.

Акустическая система для дома: рекомендации по выбору

  1. В небольших помещениях около 20 м² используйте полочную акустику.
  2. Компоненты акустической системы лучше покупать комплектом — они будут согласованы по мощности, чувствительности и распределению частот.
  3. Деревянные колонки не обязательно лучше пластиковых. Главное, чтобы корпус не создавал искажения.
  4. Большой диапазон воспроизводимых частот не обязательно говорит о хорошем качестве звука. Важнее то, насколько колонки искажают поступающий на них сигнал.
  5. Бас — это частоты примерно от 20 до 150 Гц. Если минимальная частота акустики меньше этих значений, понадобится сабвуфер. Можете ознакомится с нашими советами по выбору сабвуфера.
  6. При выборе акустики постарайтесь прослушать на ней хорошо знакомую вам композицию. В идеале это нужно сделать в комнате для прослушивания и подключив то оборудование, которое вы будете использовать дома. В «Стереозоне» для экспериментов со звуком и выбора акустики есть специальная комната для прослушивания.

Расчет мощности колонок для мероприятий

Чем больше помещение, тем мощнее нужна звуковая аппаратура, чтобы звук заполнил пространство на достаточном уровне. При подборе системы для небольшой комнаты и концертного зала нужно учитывать несколько параметров. Мощность, силу звучания в децибелах, количество человек, площадь помещения. Тогда можно оптимизировать расходы, не покупая слишком мощную технику для небольших помещений и наоборот.

Различие показателей мощности

У техники есть две характеристики мощности – пиковая и продолжительная. Первая не так важна при выборе, так как обозначает способность аппаратуры работать минимальное время при высоких пиковых нагрузках. А вторая, как раз, и характеризует способность давать звук определенной силы. Это показатель того, как колонки будут звучать при разных типах звуков все основное время проигрывания. Чтобы было одинаково достаточно мощности при проигрывании голоса и музыки, лучше брать с запасом. То есть, умножайте на два нужную вам мощность и ищите эту цифру в документах к колонкам. Вы получите нужную мощность колонок для мероприятия или для личного домашнего использования.

Рассчитываем нужную мощность

Есть правила расчета звукового оборудования для открытого пространства и закрытого помещения. Для мероприятия на открытом воздухе вам понадобится аппаратура следующей мощности: количество гостей, умноженное на 20. Вы получите число необходимых Ватт. Для закрытого зала количество человек достаточно умножить на 10, этой мощности хватит в условиях внутреннего мероприятия.

Как определиться в громкости

Поняв, как рассчитать мощность звука для помещения, вам еще нужно ознакомиться с показателем громкости отдельно. Дело в том, что громкость от мощности не зависит. Для этого нужно сверяться с цифрами, соответствующими количеству дБ. Например, прибор с мощностью 400 Вт и на 130 дБ будет звучать гораздо громче, чем та, у которой мощность 1000 Вт, но всего 120 дБ.

Другие советы

Для лучшего звучания устанавливайте колонки не на пол (или землю), а на специальные стойки. Так вы получите звуковое сопровождение высокого качества. Избегайте дешевой аппаратуры от неизвестных производителей. Она может оказаться «одноразовой» и подвести в ответственный момент. Обратите внимание на готовые акустические комплекты. В их составе оптимально подобранные микшеры, колонки, микрофоны. Тогда не придется изучать характеристики каждого прибора отдельно.

Мощность звука — заблуждения и факты

…на самом же деле у нас есть основания полагать, что нет в головах публики большей сумятицы, чем связанная с простым и вкусным словом «мощность».

Мощность, кто это?

«У меня колонки мощностью 200 Вт, а магнитола 4 х 50. Будут ли они играть вместе?» Да будут, будут, не волнуйтесь вы так. Но ещё лучше будет, если всё же разобраться, что понимается и под мощностью, и под ваттами. «Мощность», по школьному определению — работа, произведенная за единицу времени, для наших целей определение почти бесполезное. Нам удобнее по-другому, пусть и непривычно: мощность — это количество энергии, преобразованной в нужную нам форму в ту же самую единицу времени. Речь всегда идёт о преобразовании, энергия никуда не девается, такая уж у неё привычка. Усилитель (пусть в магнитоле) получает готовую к употреблению электрическую энергию в форме постоянного тока от бортовой сети автомобиля и преобразует её в электрическую, но в форме переменного тока, изображающего звуковой сигнал. Всю? Нет, примерно половину, остальное идёт в тепло, отдаваемое воздуху небольшими радиаторами сзади на магнитоле или большими, «по всему телу» у отдельного, внешнего усилителя.

Динамик (пусть и притворившийся «колонкой») получает электрическую энергию в форме переменного тока и преобразует её в механическую, теперь уже в форме долгожданных звуковых колебаний. Всю? Да как сказать… Не совсем. Коэффициент полезного действия динамика (раз уж пошли по школьному пути: отношение произведенной звуковой мощности к полученной электрической) практически никогда не превышает 0,5%. Куда деваются остальные 99,5%? А туда же, в тепло, вообще, любое устройство, созданное человеческим разумом (а равно и волей всевышнего) производит тепло плюс ещё что-нибудь. С точки зрения преобразования энергии динамик на 99 процентов с копейками идентичен паяльнику. А в оставшейся половине процента — всё: и басы, и верха, и детальность, и гениальные музыканты. Обидно? Да, но ничего лучше как-то не придумали.

И вот она, главная разница между мощностью усилителя и мощностью динамика: усилитель её, можно считать, производит. А динамик — потребляет, не производя в обмен, как мы только что выяснили, почти ничего.

И когда мы говорим о мощности усилителя, то речь идёт о том, что ОН ДАЁТ. А когда о мощности динамика — то о том, что ОН БЕРЁТ. А сколько один даёт и сколько другой берёт? В порядке поступления:

Сколько мощности даёт усилитель?

Вот усилитель. Пусть тот, что в магнитоле, пока наплевать, потом почувствуете разницу. Какая у него мощность? Да какая угодно, всё зависит от того, какой уровень сигнала на входе, грубо говоря — в каком положении регулятор громкости. Мощность на выходе может оказаться 1 Вт, может — 10, может — 50, может… Подождите, должен же быть предел. Разумеется, но мы ведь не спрашивали какая МАКСИМАЛЬНАЯ мощность. А максимальная у каждого своя. Она определяется тем, какое наибольшее напряжение переменного тока сможет создать усилитель на своём выходе, когда к выходу присоединена нагрузка, в виде динамика, обладающего каким-то сопротивлением. Мощность на выходе определится просто: как величина этого напряжения, возведённая в квадрат и поделенная на сопротивление нагрузки. Присоединили к выходу вольтметр и нагрузку, на вход подали переменное напряжение, для удобства измерения мощности — на какой-нибудь одной частоте, и смотрим. На выходе 2 В, когда к нему присоединена нагрузка 4 Ом. При таких измерениях к выходу, разумеется, подключают не акустику, а её эквивалент в виде резистора, а то уши завянут. Возвели-поделили и получили: мощность на выходе ровно 1 Вт. Здесь есть небольшая засада, связанная с тем, что мы говорим о переменном напряжении, величину которого можно измерять по-разному. Чаще всего пользуются шкалой среднеквадратичных значений. В русском это слово длинное, поэтому привилось английское сокращение RMS (root mean square), означающее то же самое. Чтобы не вдаваться в детали, достаточно запомнить: для синусоиды значение напряжения RMS меньше амплитудного в 1,41 раза, то есть — в корень из двух. Мощность, указываемая в ваттах RMS — это та, что получена, когда напряжение при расчёте взяли RMS, что логично. А если взять амплитуду напряжения, то мощность, во-первых, будет называться пиковой, а во-вторых, станет ровно вдвое больше, чем RMS.

Сигнал на выходе обычного усилителя с 12-вольтовым питанием, как он выглядит на экране осциллографа. По горизонтальной оси — время, по вертикальной — напряжение. Ни при каких обстоятельствах синусоида, изображающая чистый тон одной-единственной частоты, не может упасть ниже нуля или перевалить через границу, установленную напряжением питания. Вообще-то это выходной сигнал обычного домашнего усилителя, амплитуду которого выставили на нужном уровне, для примера.

Возвращаемся к усилителю. Один ватт — это несерьёзно, прибавляем на входе. До каких пор будет расти напряжение на выходе и что его остановит? Остановит его ограничение сигнала. Усилитель питается постоянным напряжением, и то, что появляется как переменное на его выходе, не может быть больше напряжения питания по амплитуде. Нету там больше. И если мы будем наблюдать за сигналом на выходе, то в какой-то момент верхушки прежде изящной волны окажутся срезаны, там полуволна хотела перейти через верхний предел, напряжение питания. И обломилась. Откатываем сигнал на входе назад, пока ограничение не пропадёт, и смотрим на размах сигнала. Он чуть меньше полного напряжения питания, потому что что-то теряется в выходных каскадах усилителя. Если усилитель питается (как в пресловутой «магнитоле») от бортовой сети автомобиля, то нижняя полуволна подойдёт вплотную к нулевой отметке, а верхняя — к уровню 12 В. Что получается? Амплитуда, будем считать, 6 В в каждую сторону, возводим-делим и получаем сказочную цифру 4,5 Вт. Проверьте, если не лень. Выходит, что по всей науке это — максимальное значение мощности на выходе магнитолы, питаемой от 12 В? А так и было лет двадцать назад. К счастью, уже недавно было найдено решение, позволившее если не выйти на грозные 4 х 50, то во всяком случае, уйти от скорбных 2 х 4,5. Это — мостовое включение усилителей, применяемое ныне во всех автомобильных головных аппаратах.

При мостовом включении на одну нагрузку работают два усилителя, включённые так, что размах синусоиды на выходе удваивается. По уже сообщённому вам способу посчитать выходную мощность это будет в четыре раза больше, чем 4,5 Вт, потому что напряжение возводится в квадрат, стало быть — 18Ватт. Примерно это значение имеет максимальная выходная мощность всех когда-либо испытанных нами головных аппаратов (в каждом из четырёх каналов, разумеется).

Откуда берутся знаменитые 4 х 40 Вт, потом превратившиеся в 4 х 45, 4 х 50 и так далее? Что это, чистое враньё? Как-то не вяжется с образом именитых и более чем респектабельных производителей техники, а ведь эти цифры украшают лицевые панели всех марок: Alpine, Blaupunkt, Clarion и далее в порядке латинского алфавита. Ведь когда речь заходит об отдельных усилителях тех же фирм, всё становится честно и правильно, возможностей убедиться за эти годы было достаточно. Здесь две уловки, первая —техническая, и только вторая — маркетинговая. Техническая уловка заключается в том, что в современных «головах» применены усилители так называемого «класса Н», там есть специальная цепь, способная на короткое время дать выходным каскадам увеличенное напряжение питания. Стоит конденсатор и, пока всё тихо, заряжается. А в пиках громкости он оказывается подключён последовательно с питанием выходного каскада, и пик проскакивает без искажений, не касаясь макушкой потолка 12 В. Но это если пик уровня сигнала совсем короткий, например — первый момент удара в барабан. Дальше, конечно, запас энергии иссякает, но дело уже сделано, даже два дела: действительно, на краткий миг максимальная мощность стала намного больше возможной при непрерывной работе, а во-вторых, появилась возможность об этом упомянуть. Не слишком акцентируя внимание на том, при каких условиях максимум выходной мощности стал таким. К чести респектабельных компаний (см. алфавитный список выше) надо сказать: часто в таблице технических характеристик на последней странице инструкции приводится и непрерывная мощность, с указанием, что это в ваттах RMS, и с указанием, какое было при этом напряжение питания, как правило, 14,4 В, потому что при этом «потолок» для выходной синусоиды приподнимается, и тогда в этой строке фигурируют именно 18 — 20 Вт на канал, случаи захода в третий десяток единичны.

Почему не их пишут на лицевой панели? Считайте это традицией, как цены на нефть в долларах за баррель, а на золото — за тройскую унцию. Тем более, как мы выяснили, формально — имеют право. А теперь быстро ответьте на контрольный вопрос: когда вы в последний раз видели автомобильные динамики, на которых была бы указана мощность МЕНЬШЕ 18 Вт? Поэтому всякие разговоры о «подборе» акустики к магнитоле по мощности смысла не имеют никакого. «А как же, — можете спросить вы, — у моего соседа по гаражу 100-ваттные «лопухи» захрипели и сгорели?» А это, милые вы мои, произошло не оттого, что мощности головного устройства было много, а оттого, что было мало МАКСИМАЛЬНОЙ мощности.

Где кончается мощность.

Все видят, но мало кто обращает внимание: там, где всерьёз, а не для красоты, в тройских унциях, указывается максимальная выходная мощность (например, на последней странице инструкции), рядом стоит и величина коэффициента нелинейных искажений, соответствующая приведенному значению. У нас это сокращается в к.н.и., а в англоязычной инструкции будет выглядеть как THD и какое-то число со знаком процентов. Вспоминаем (или узнаём), что такое нелинейные искажения. Их иногда называют гармоническими (THD и означает Total Harmonic Distortion — общие гармонические искажения), что более правильно. Суть дела: когда усилитель работает идеально, сигнал на выходе будет отличаться от сигнала на входе только амплитудой, причём прямо пропорционально. Добавим коксу. Напряжение на выходе возросло на вольт с небольшим, как вдруг на спектрограмме вырос целый забор из гармоник, значит, выходной сигнал опасно близко подошёл к предельно возможной амплитуде. По амплитуде гармоники вроде небольшие (верхняя шкала сильно растянута по вертикали), и в сумме они складываются в невеликий итог: меньше полпроцента. Но: вот этого забора раньше в звуке не было, а теперь он есть. Добавим ещё — и вот, приплыли: на синусоиде стали отчётливо видны искажения формы, именно те, которых мы ожидали — выше питания не прыгнешь. А сигнал на выходе стал чудовищным, в реальной жизни мы услышим, помимо чистого тона 250 Гц, массу нового: и 500, и (особенно) 750 Гц, и далее до самых невозможных частот, утешение, что все они кратны 250 Гц довольно слабое, для слуха это или скрип, или хрип, в зависимости от основной частоты. Теперь вопрос: Что принять за максимальную выходную мощность? Если там, где искажений было ещё совсем мало, то окажется 13,5 Вт. RMS, как вы теперь понимаете, увидев, в чём указано выходное напряжение. Если там, где под полпроцента, то будет уже почти 19 Вт. А если согласиться с 10%, то получим сказочную для таких усилителей величину 23 Вт. Но только лучше не соглашаться: видите, что кроется за этой неприметной цифрой?

Итог нашего анализа на первый взгляд парадоксален: с одной стороны, у усилителя есть только одна максимально достижимая выходная мощность, зависящая от напряжения питания и сопротивления нагрузки. Но при этом указать её можно как угодно, вопрос в том, какой уровень искажений считать допустимым. Традиционно для действительно мощных, внешних усилителей, значение максимальной мощности указывают при к.н.и., равном 1%. Для головных устройств изготовители предпочитают 10%, по причинам, уже не нуждающимся в комментариях.

И всё же, почему?

Почему при таких, в общем-то, жалких значениях максимальной мощности усилителей головных устройств прицепленные к ним «200-ваттные» 6 х 9 начинают хрипеть, а то и гореть? Почему хрипеть, вы уже видели: хрип — это гармоники, появившиеся на выходе усилителя при его перегрузке. Человек думает, что его могучая магнитола перегрузила динамик, а на деле «лопуху» что дали, то и играет, думая своими лопушиными мозгами, что так и надо. А почему же горят, если им такая мощность — как слону дробина? А давайте ещё раз взглянем на результаты предыдущих опытов с искажениями, а потом их даже продолжим. Я там кое-что дорисовал: условные кривые, показывающие, какая часть частотного спектра попадает на низкочастотную головку (собственно «лопух»), а какая — на блок ВЧ-головок в его центре. Естественно, это относится в полной мере и к любой многополосной акустике, а у нас другой и не бывает. Вот играет что-то, и там есть мощная составляющая с частотой 250 Гц. Пищалка пока в отпуске: на голубом поле, изображающем её рабочий диапазон, сигнала почти нет, и правильно, не её это частота. Когда искажений становится полпроцента, что-то уже появляется, но пока ничего страшного, амплитуды невелики, а большая их часть попадает в область, где фильтр пищалки уже начинает отрезать ненужное. При 10% уже нехорошо: пищалке положен полный покой, а на неё валится куча гармоник, да ещё с уровнем выше, чем содержание верхних частот в нормальной фонограмме. Пойдём дальше, до предела: выкрутим входной сигнал так, что после отрезания верхушек полуволн смирная синусоида превратится в сигнал почти прямоугольной формы, в котором гармоник за сорок процентов от основного сигнала. Вот здесь пищалке, скорее всего, хана. А ведь и усилитель у нас тот же, и частота по-прежнему «непищалочья». При некотором природном даре таким сигналом можно подпортить и мидбас. Прямоугольные импульсы несут на выход намного больше энергии, чем синусоида, и электрическая мощность, которая при этом поступает на динамик, составит больше 50 Вт. Представим себе 50-ваттный паяльник, потом вспомним, что динамик — это паяльник на 99,5%, и судьба звуковой катушки, сделанной, в отличие от обмотки паяльника, не из нихрома, слюды и асбеста, а из гораздо более нежных материалов, перестанет выглядеть безоблачной.

Значит ли всё это, что на мощность акустики можно вообще не смотреть? Не совсем. Надо просто смотреть несколько по-другому.

А вот это — реальный усилитель, аналогичный тем, что применяются в головных устройствах. С точки зрения величины сигнала на выходе такие усилители, собранные по мостовой схеме, равносильны усилителю с двухполярным питанием, в нашем случае ±15 В. Верхняя часть экрана принадлежит анализатору спектра. Трактовать его показания несложно, даже бывает увлекательно. По горизонтальной оси теперь частота, а по вертикальной — уровень сигнала на выходе на этой частоте. Как видим, главное, что есть на выходе — это усиленный сигнал частотой 250 Гц, поданный на вход. Но не только. Каждая «шпилька» — это гармоника основной частоты, Вторая гармоника — на частоте 500 Гц, третья — на 750 и так далее. Здесь «и так далее» не так много: уровень искажений очень низкий. Анализатор спектра — вещь крайне чувствительная, можно разглядеть, например, небольшой выступ на частоте 50 Гц: это наводки сети. А «трава» между столбиками гармоник — собственные шумы усилителя.
Помимо суммарного уровня искажений (это то, что выражается в процентах), кое-какая информация содержится в уровне отдельных гармоник. Чётные (с частотой вдвое, вчетверо, вшестеро и т.д. выше, чем основной тон ) — признаки несимметричного искажения сигнала, нечётные, начиная с третьей — симметричного.

Амплитуда сигнала выросла на вольт с копейками, форма на глаз вроде бы не изменилась, но анализатор спектра не проведёшь: сколько сразу всякой гадости появилось в выходном сигнале. И хотя гадости всего 0,4%, это уже будет слышно, ухо по чувствительности превосходит лучшие приборы. Здесь можно разглядеть, что стала расти третья гармоника (на 750 Гц), то есть появились ранние признаки симметричного, сверху и снизу, ограничения сигнала.

Из предыдущего примера работы усилителя на мощности, далёкой от максимальной. Наш тестовый сигнал в реальных условиях предназначен исключительно для мидбасового динамика, на пищалку его не пускает разделительный фильтр (синяя кривая, довольно условно). Пока всё хорошо: на пищалке, кроме шумов, ничего и нет.

Уже при искажениях 0,5% пищалке начинает кое-что доставаться, этого недостаточно, чтобы нанести ей вред, но, думая, что это — замысел композитора, ВЧ-головка будет старательно «озвучивать» гармоники, вносу в звучание совершенно непрошенные детали.

Всё, уговорили. Надо покупать усилитель.

Ясно, без усилителя — не жизнь. Начинаем выбирать и, естественно, первым долгом смотрим на максимальную (уже знаем, что это такое) мощность, за что боремся-то? О том, как её выбирать, разговор будет отдельный и неожиданно для вас короткий. Но вначале давайте определимся, откуда эта мощность берётся. Что делает отдельный усилитель столь качественно иным устройством по сравнению с доставшимися каналами усиления, встроенными в головное устройство? Из предыдущего текста ясно: всё дело в питании. Усилитель создаёт на выходе переменное напряжение с размахом, сверху донизу, не больше, чем напряжение питания выходных каскадов. Для усилителя магнитолы это — напряжение на борту, 12 В на заглушенной машине, около 14 В — на ходу. Главная же составная часть внешнего усилителя — источник питания. Он получает постоянное напряжение из бортовой сети, превращает его в переменное довольно большой частоты (десятки килогерц), переменное уже можно повышать с помощью трансформатора, что источник питания усилителя и делает, а потом, уже повышенное, снова выпрямляется и подаётся на собственно усилитель. До скольких вольт раздули напряжение в ходе этой деятельности, на такой высоте и пройдёт потолок размаха выходного напряжения. Дальше — простая арифметика. Предположим, из 12 В бортовых источник питания сотворил 50. Реально это будет два напряжения разной полярности по 25 В каждое, так удобнее. Значит, размах выходного напряжения будет (в каждую сторону) никак не больше 25 В минус какие-то копейки, теряемые в транзисторах. Максимальная выходная мощность получится как 25 в квадрате, поделённая на сопротивление нагрузки. Это по закону Ома, он неумолим. Выходит чуть больше 150 Вт. Только это — пиковое значение, по шкале RMS — ровно вдвое меньше, около 75 Вт. Цифры вполне реальные, таких усилителей — навалом. Можно ли выжать из этого усилителя больше? Первая стадия «форсажа» у многих моделей произойдёт сама собой, стоит завести двигатель. И когда при заведенном двигателе и работающем генераторе напряжение на борту станет не 12, а 14,4 Вольт, напряжение на выходе источника питания возрастёт с 50 до 60 В, так же поднимется и «потолок» для выходного напряжения усилителя, и максимум мощности возрастёт до 108 Вт. Ничего себе прибавка, верно? Только сильно-то пока не ликуйте. Станет ли при этом усилитель играть громче? А с чего это, собственно? Общее усиление, от источника сигнала до выхода, осталось таким же, оно от питания не зависит (а если бы вдруг зависело, то повинный в этом компонент срочно запросил бы постоянной регистрации в мусорном баке), значит, как играло, так и будет. Иное дело, что если прежде на какой-то громкости появлялись искажения, это когда на пиках сигнала выходное напряжение пыталось перепрыгнуть через планку, поставленную источником питания, то теперь этот момент отодвинется в область большей громкости. Насколько отодвинется? Давайте прикинем. На полтора децибела. Один щелчок громкостью, а то и ни одного, это зависит от шага регулятора.

А что мы выиграли по сравнению с «прошлой жизнью», когда вообще усилителя не было? В ваттах вроде бы очень много. А в децибелах максимальной неискажённой громкости, опять же вроде бы, не очень: 5,4 дБ. Но это только «вроде бы», как мы потом увидим, счастье — не в одних щелчках регулятора громкости. Надо всё же организовать какую-то гармонию между мощностями. Посмотреть, например, какая мощность у акустики, и по ней подобрать усилитель, верно?

Это я нарочно, с целью провокации. О том, как можно загубить акустику недостаточной мощностью, было в прошлом выпуске, теперь давайте попытаемся сделать это с помощью излишней. Это будет намного труднее, предупреждаю.

Вернёмся ещё раз к фразе, которую я по разным поводам произносил (и писал) очень много раз, последний раз — в прошлом выпуске. Вот она: «И когда мы говорим о мощности усилителя, то речь идёт о том, что ОН ДАЁТ. А когда о мощности динамика — то о том, что ОН БЕРЁТ». Максимальная мощность усилителя — это та, больше которой он не может дать, потому что начинает искажать сигнал, а мы не для этого его покупали. Максимальная мощность акустики, стало быть, это та, больше которой она взять не может, потому что ЧТО? Тоже начинает искажать сигнал? А она это начинает делать сразу и понемногу, совсем не так, как усилитель, жёсткой планки ограничения у акустики нет. В стародавние времена был советский стандарт, по которому нормировалась так называемая номинальная мощность динамиков. Там оговаривались специальные условия, полоса частот и так далее, в общем, мощность считалась такой, чтобы нелинейные искажения не превышали 10%. Лучший басовый динамик того времени назывался 6ГД2, первая цифра — это как раз номинальная мощность. Были ещё 4 ГД, 3 ГД и так далее, это потом приняли определение паспортной мощности, зависящей уже не от искажений, а от живучести, и все эти ГД разом потолстели до 10, 20, 75 и тому подобного. ГОСТы эти приказали нам всем долго жить, и сейчас мощность определяют иначе, и очень важно это понимать, чтобы испытывать к этому показателю то отношение, которого он заслуживает.

Попрошу набрать это красным, если забуду — вы сами тогда карандашом, ладно?

Мощность, указываемая на акустике, это не та, на которой она должна работать, а та, которая её разрушает.

Разумеется, должна быть взаимосвязь между возможностями акустики и ресурсами источника этого вероятного разрушения, но это взаимосвязь, а не тождество. Представьте себе: вы купили автомобиль, у которого максимальная скорость 200 км/ч. И подвернулась вам резина с индексом скорости Т (190 км/ч). Что, нельзя ездить? При 191 км/ч все четыре колеса — в клочья? Или наоборот, у шин индекс скорости Z (240 и больше), и вы сбиваетесь с ног, подбирая под такую резину подходящий автомобиль. Нереально.

Тем не менее сплошь и рядом приходится слышать (да и читать), как акустику к усилителю (и наоборот) подбирают, глядя в первую очередь на мощность, а потом уже на всё остальное.

Так что давайте в последний раз, чтобы не возвращаться к вопросу. Цифры мощности на акустике, без указания условий измерения, не означают ничего, это часть современной, но укоренившейся традиции. Если производитель акустики хотя бы относительно корректен в приводимых им цифрах, то он может указать долговременную мощность, а это — максимальная неразрушающая (или минимально разрушающая, не забывайте и об этом) мощность, поданная на динамик в течение получаса по схеме: минуту работает — две отдыхает. Подаётся при этом шумовой сигнал, пропущенный через фильтр, отрезающий всё ниже 40 Гц и всё выше 4 кГц, так что к пищалке-то это уже почти не имеет отношения. Вот если акустика эти самые трудные в своей жизни полчаса пережила — записывается использованное значение мощности. Если погибла — берётся из предыдущего опыта с меньшей мощностью. Кратковременная мощность — это такая, которая не погубит динамик (или погубит, но в последний момент) после 60 циклов «секунду орём — минуту отдыхаем». Все описанные процедуры подразумевают подведение испытуемого образца акустики максимально близко к краю могилы, поэтому ориентироваться на них как на нормативный показатель тому, кто за акустику заплатил из своего кармана, как-то не очень разумно. Единственный тип показателя, хоть немного напоминающий возможное реальное использование своей законной собственности, — это rated noise power по стандарту IEC 268-5, когда акустика должна остаться живой после 8 часов непрерывной работы на уже упомянутом шумовом сигнале. Её не указывают почти никогда.

Ориентиры здесь должны быть другими, их на коробках с акустикой искать не стоит.

Ориентиры, где вы?

Наши штатные специалисты в тестах акустики неоднократно рекомендовали (когда изготовители совсем уж теряли стыд и смолчать было немыслимо) равняться на показатели, которые хотя бы примерно обозначают область возможных значений. Для 6-дюймовой компонентной акустики границы разумного риска пролегают где-то на 40 и 90 Вт (это широко, внутри уже надо смотреть на особенности конструкции), для 5-дюймовой — закономерно ниже, 30 — 70 Вт. Такими мы считаем значения rated noise power. Можете не соглашаться, но опровергающие опыты — за свой счёт, пожалуйста.

Цифры, в принципе, напоминают распространённые значения максимальной выходной мощности усилителей широкого распространения, так что самый простой, на грани примитивизма, ответ на вопрос о согласовании мощности усилителя с мощностью акустики уже готов: типичный усилитель подходит для работы с типичной акустикой. Любой — с любой. В принципе, если не хотите париться, можете взять его на вооружение. Но ответ чересчур прост, чтобы хоть как-то претендовать на роль исчерпывающего, это ясно.

Дальше нужно смотреть уже на реалии жизни. В жизни, как у меня есть основания полагать, и усилитель, и акустика будут использованы для воспроизведения музыки, а не испытательных сигналов, на музыку похожих лишь очень приблизительно. Музыкальный сигнал — это не синус и даже не шум, это сигнал с большой разницей между средним значением и пиковым. Кратковременные пики сигнала, за редким исключением, не угрожают здоровью акустики, которой в основном приходится сопротивляться тепловой нагрузке, а выделяемое на звуковой катушке тепло — функция среднего уровня подведённого сигнала. Приходилось видеть в документации самых серьёзных изготовителей акустики, как рядом с вполне реальными (и с указанием всех нормативных данных) цифрами долговременной мощности приводились значения выдерживаемой мощности на коротких (скажем, 10 мс) пиках. Цифры достигали порой сотен ватт, и это уже не маркетинг, это факт, даже очень мощный, но очень короткий всплеск сигнала динамик не погубит. А у усилителя взгляд на пики уровня принципиально иной. Хоть на миллисекунду превысит уровень сигнала планку максимальной мощности — и будет безжалостно обезглавлен, то есть пойдёт дальше по проводам к акустике уже в искажённом, по сравнению с первоисточником, виде. Этого допускать никак нельзя. И здесь уже есть смысл взглянуть на свои музыкальные вкусы.

Вкусы не измеряют.

Это почему же? Можно попробовать. Я пропустил через компьютер некоторое количество музыкальных фрагментов и выбрал довольно показательные с точки зрения соотношения средней (опасной для акустики) и пиковой (которая должна быть посильной для усилителя) мощности. Уровень сигнала измерялся в децибелах относительно максимального, записанного на диске, но для наглядности я пересчитал всё в проценты от максимальной мощности. Первая картинка — это 60 секунд «Шествия гномов» (6-я дорожка «Let’s Test!»). Если система настроена так, чтобы самые большие пики сигнала не вышли за пределы выходной мощности усилителя, то в целом за эту минуту акустике будет доставаться около полутора процентов этой мощности. Даже в те 12 секунд, когда оркестр совсем распоясается, тепловая нагрузка составит не более половины мощности.

Минута деятельности барабанщиков Yamato (помните, приезжали в Москву?). Уровень сигнала выбран так, чтобы беспрепятственно пропустить пик деятельности на 21 секунде. В результате средняя мощность всего фрагмента — меньше процента от максимальной, а самой его напряжённой части — одна десятая от максимума.

Третий пример: «In the Pocket» (Kai Eckhardt, «NAIM Sampler», дорожка 8). Средняя мощность 13% от максимума, а прибавить громкость в искренней попытке загубить акустику будет означать — обрубить многочисленные пики, вызванные умелой работой барабанщика.

Не слушаете аудиофильские изыски? Не станем заставлять. Вот фрагмент фонограммы панк-роковой группы Kurban (турецкой и, кстати, довольно любопытной). Вот здесь уже — да, ребята на сцене не отдыхают, и средняя мощность подолгу составляет около 40, а то и больше процентов от максимума. Но ориентиры, в принципе, остаются те же. Просто рок-музыка попадает в разряд «небезупречного контроля», что логично.

Внимательный читатель здесь может озадачиться: « Подождите-ка, выходит, мы слушаем музыку на одном-двух, много — десяти ваттах, подведенных к акустике? А почему же тогда громко играет? Сами ведь слышали: громко». Отвечу: а почему бы ей громко не играть? Вы ведь с децибелами управляетесь легко (даже те, кто прежде не умел). Берём любую акустику из любого нашего прошлого теста и смотрим на показатель чувствительности. Ну, скажем, 87 дБ, это так, средне-типичное значение. Такое звуковое давление создаст эта акустика на расстоянии 1 м при подведенной к ней мощности 1 (один-единственный) Вт. Это, между прочим, уже не тихо. Чтобы эта акустика создала уровень звукового давления 90 дБ, стандартный для контрольного прослушивания в звукозаписи, всего-то ей потребуется 2 Вт. Подадите 10 Вт — получите 97 дБ. Это совсем громко. Да ещё учтите, что у нас таких динамиков как минимум два, а звучат они не в заглушенном помещении, а в салоне, где потерь намного меньше, а отражённые звуки приходят к нам же. Что же тогда, спросите вы, динамик будет вытворять, когда на него придут те самые пиковые сто, скажем, ватт? Ровно то, что и должен: кратковременно, в течение долей секунды, вскрикнет на 107 дБ. Дайте ему эти 100 Вт непрерывно, в виде шума или, того хуже, тонального сигнала, и крик этот будет предсмертным. А так — всё под контролем, не волнуйтесь.

В акустике всё измеряется не так, как в обычном мире. Причин тому несколько, объяснения иных способны увести в райские кущи науки, их трогать не будем. Другие — поддаются простым истолкованиям. Или просто могут быть приняты на веру, как вам удобнее.
Человеческий слух не умеет складывать и вычитать. Только умножать и делить. Эволюция (или Создатель, выберите по вкусу) устроила его таким образом, как мне представляется, руководствуясь технической целесообразностью. Слух работает в огромном диапазоне громкостей. Звуковое давление (поддающееся измерению, как известно), соответствующее болевому порогу, превышает звуковое давление порога слышимости в десять миллионов раз (прописью, чтобы не считать нули). Слух приспособился к этому, сделавшись (по воле эволюции или Создателя) логарифмическим. Логарифмы люди придумали уже потом, а у нас в голове они сидят от природы. Логарифмическая природа слуха состоит в том, что он оценивает разницу в громкости не по тому, НА сколько больше звуковое давление, а по тому, ВО сколько раз оно стало больше. Так (если убрать сейчас все промежуточные главы истории) была придумана единица измерения, на которой в акустике и элеткроакустике базируется решительно всё — децибел. Кто всё про это знает, дальше не читайте, впрочем, я об этом просил, ещё открывая эту серию публикаций.
Остальным, сколько бы их ни оказалось, даю возможность за пять минут освоить операции с децибелами и впоследствии делать это легко и изящно. Итак: децибел это единица, которая, если её прибавить, означает «умножить», а если отнять — «поделить». Например: звуковое давление больше на 3 дБ. Это означает — вдвое. Ещё на 3 дБ? Ещё вдвое. Больше на 1 дБ — это в 1,25 раза, примерно. Больше на 10 дБ — вдесятеро. И наоборот: отнимите от звукового давления 3 дБ, и это будет означать, что оно уменьшилось вдвое.
Достаточно запомнить несколько важных значений, чтобы из них, как из кирпичиков, составлять представление о том, что означает та или иная величина, указанная в децибелах.
Вот, пожалуйста:

Мощность или звуковое давление
различаются в
Напряжение
различается в
1 дБ 1,25 раза 1,13 раз, вообще копейки
3 дБ 2 раза примерно полтора раза
6 дБ 4 раза 2 раза
10 дБ 10 раз примерно 3 раза
12 дБ 16 раз 4 раза
20 дБ 100 раз 10 раз

Вот и всё: встретили, в примеру, где-нибудь 18 дБ, прикидываете, что это 12 + 6, берёте «разы» для этих двух слагаемых и умножаете. Именно умножаете, в этом и весь фокус. В нашем примере 16 на 4 даёт 64. Только обратите внимание: при сравнении звуковых давлений и мощностей надо брать «разы» из левого столбца, а при сравнении напряжений, скажем — из правого, это хитрость, связанная с тем, что рост напряжения, к примеру, на выходе усилителя вдвое приводит к росту мощности вчетверо (там напряжение в квадрате), а децибелы — одни и те же, их 6. Впрочем, дальше мы в основном будем оперировать мощностями и звуковыми давлениями, так что правый столбец пока постоит в резерве.
Что означает децибел на слух? Разница в громкости в 1 дБ (это у большинства головных устройств — один щелчок энкодером или кнопкой громкости) ловится на слух только при немедленном сопоставлении, как было и как стало. Проведите опыт: послушайте звук на громкости, скажем, 15 по дисплею, а потом — 16, выйдите из машины на полминуты, и пусть ваш приятель (можно даже приятельница) закроет ладонью (или ладошкой) дисплей, а вы определяйте: там 15 или 16? Если вы при этом будете попадать мимо кассы реже, чем пять раз из десяти (даже на одном и том же фрагменте), значит, у вашего головного устройства шаг громкости 2 дБ, это тоже встречается. Хотя есть, конечно, таланты.
3 дБ воспринимаются как заметное изменение громкости. Не «большое», а просто заметное. И здесь вас ждёт плохая новость, о которой вы уже могли догадаться. Звуковое давление, создаваемое акустикой, и мощность, подведенная к акустике для того, чтобы оно было создано, живут в одном и том же столбце нашей шпаргалки. Следовательно, для того, чтобы получить заметное изменение громкости, подведенную мощность надо увеличить вдвое. Вот из-за этого и все проблемы с мощностью. В основном из-за этого

Как рассчитать звуковую мощность

Каждый, кто работает с профессиональным звуком, наверняка хоть раз сталкивался с интегрированными системами фонового звука. Ведь ни для кого не секрет, что из таких малых и средних проектов может состоять едва ли не большая часть продаж и у дистрибьютора оборудования, и у дилера, и у инсталлятора. А, в отличие от больших систем, «распределёнка» не требует сложных расчетов, создания акустических моделей и другой рутинной предпродажной работы. Опытный специалист может составить типовую спецификацию «в уме», зная только габаритные размеры помещения. И, конечно, такая система будет работать, но, как говорится в известном анекдоте, есть один нюанс…

Благодаря успешной работе маркетологов и продавцов, владельцы и франчайзи кафе, ресторанов, магазинов и торговых центров по всему миру, и в нашей стране, теперь вполне понимают, что правильный звук – это важно как для настроения и лояльности клиента, так и для эффективности того же рекламного контента. И, пусть я сейчас говорю выдержками из красочных каталогов любого производителя потолочных акустических систем, результаты труда маркетологов мы видим – все серьезные мировые бренды давно вышли на российский рынок и обратили клиента в свою веру. А грамотный руководитель бизнеса в этой сфере наконец перестал пренебрегать качеством звука, как было еще не так давно.

Казалось бы, дело сделано – формируй типовое предложение и меняй в нем количество акустических систем в зависимости от конфигурации помещения. Но всё не так просто. Вернее, относительно просто, если подходить к построению систем с позиции наименьших временных затрат на единицу товара. И в этом есть логика. А самый неоспоримый аргумент — «это ж не филармония!» — уже стал практически хрестоматийным, и он идеально применим к любому объекту, кроме, собственно говоря, той самой филармонии.

Вероятно, кто-то из вас скажет: «Это праздные рассуждения ни о чем», поэтому я перейду, наконец, к главному.

Сверхзадача статьи как раз и состоит в развенчивании распространенного мнения о том, что проектирование системы фонового звука не стоит хоть сколько-нибудь серьезных временных и умственных затрат. Что касается времени, я частично соглашусь – мало кто из нас располагает им в таком количестве, чтобы позволить себе потратить часик-другой на выбор одной из двух соседних потолочных секций для громкоговорителя. А вот подключение инженерной мысли поможет нам получить лучший результат из тех же продуктов, что и у конкурентов. И результат при правильном подходе понравится как клиенту, так и вашему отделу продаж. Согласитесь, что при нынешнем ассортименте очень похожего друг на друга звукового оборудования разных производителей, предназначенного для коммерческих систем, всё же главный, если не единственный, способ привлечь и удержать клиента – предложить наиболее привлекательную цену. И поскольку редкий покупатель будет с трепетом относиться к качеству звучания и сможет его объективно оценить, в большинстве случаев выиграет тот, предложит более экономичное решение.

Но давайте попробуем абстрагироваться от всех коммерческих составляющих и сконцентрируемся на родном и близком сердцу – на инженерной части.

Инженер, твой выход!

Существует тысяча и одна рекомендация по расчету тех же потолочных акустических систем. Давайте именно с них и начнем. Что только не предлагают нам производители для упрощения нашего труда… Один вендор распространяет среди партнёров талмуды с рекомендациями по расчету, другой предлагает «юзер-френдли» акустические симуляторы, в которых любой может нарисовать нужную конфигурацию громкоговорителей, третий пишет приложения-калькуляторы, в которые достаточно ввести линейные размеры помещения, и получишь сформированный отчет со схемой расположения. Среди последних, например, JBL, предлагающий свой калькулятор чуть ли не для каждой серии продукции. Это, признаюсь, наиболее удобно, и при правильном использовании дает быстрый и приближенный к реальности результат. Но обо всём по порядку.

Считаю необходимым «разобрать по косточкам» плюсы и минусы существующих методов.

Метод, который без сомнения автономен и энергонезависим — графический, похожий по своему принципу на построение лучевого эскиза. Для него требуется знать номинальный угол раскрытия громкоговорителя и высоту потолка. Вот как выглядит результат:

Рис. 1. Графический расчет шага расположения потолочных громкоговорителей. A – расстояние от пола до ушей слушателя; B – расстояние от ушей до потолка; C – угол раскрытия громкоговорителя; D – точка пересечения лучей соседних громкоговорителей.

Все достаточно просто. Графически изображается угол раскрытия громкоговорителя, высота ушей слушателя (принято брать 1-1,2 метра человек в сидячем положении и 1,5 метра – в стоячем), и точка пересечения горизонтали и лучей угла раскрытия считается критической точкой, которую должен пересекать луч от соседнего громкоговорителя. Таким способом и определяют шаг расположения акустических систем.

А теперь копнем чуть глубже. Известно, что величина угла раскрытия, указанная в паспорте громкоговорителя является номинальной, т.е. усредненной по частотной полосе, определяемой производителем на своё усмотрение. И ни для кого не секрет, что направленные свойства любого реального излучателя серьезно разнятся в различных частотных полосах. В результате, мы выполняем расчет, порой даже не зная, в каком диапазоне получили правильное покрытие. Так что, коллеги, будьте внимательны – сделав такой расчет с использованием номинального угла раскрытия, вы вполне можете получить «ямы» в частотных полосах, например, выше 8-10 кГц.

Теперь еще один нюанс. Номинальный угол раскрытия, как правило, высчитывается из полярных диаграмм таким образом, что при отклонении в сторону от оси излучения на ½ заявленного угла раскрытия падение уровня давления составит 6 дБ. Притом, снова внимание, на равном расстоянии от излучателя.

Рис. 2. Графический расчет шага расположения потолочных громкоговорителей. A – расстояние от пола до ушей слушателя; B – расстояние от ушей до потолка; C – угол раскрытия громкоговорителя; D – точка падения уровня звукового давления на 6 дБ

Выходит, в точке пересечения горизонтали и луча падение будет уже не 6 дБ, а больше. Ну, ничего страшного, вооружаемся циркулем и решаем проблему.

Однако это тоже ещё далеко не всё. Как вы думаете, когда мы пересечем лучи от соседних громкоговорителей в правильной точке, какое давление мы там получим? Имея 2 волны с уровнем давления по -6 дБ SPL относительно оси излучения, мы можем сложить их по правилу энергетического суммирования (Л1, стр.33) как два равных давления и получить сумму, равную -3 дБ относительно оси. Однако это правило работает в случае некогерентного сложения, т.е. например, при неодинаковом расстоянии от источников, а вот в точке пересечения лучей волны когерентны (синфазны), и только в ней складываются во всём спектре, давая удвоение давления, т.е. оно будет практически таким же, как на оси излучения. На рисунке ниже представлен результат расчета в модели с двумя близко расположенными потолочными громкоговорителями.

Рис. 3. Расчет уровня звукового давления с использованием двух потолочных громкоговорителей в октавной полосе с центров на частоте 500 Гц.

В итоге получается вот какая картина: когерентное сложение волн ровно между громкоговорителями существует всегда и дает повышение до +3 дБ на довольно малой площади, а буквально в сантиметрах от этого «шва» волны суммируются некогерентно и наблюдается падение давления. И сразу поясню, что полностью избавиться от этого «шва» не удастся. Ниже приведены результаты акустического моделирования с разным шагом громкоговорителей.

Рис. 4. Диаграмма звукового давления при расположении громкоговорителей на высоте 3 метра от пола с шагом 1.5 метра. Расчет сделан в треть-октавных полосах 10 кГц (нижняя диаграмма) и 400 Гц (верхняя диаграмма).

Рис. 5. Диаграмма звукового давления при расположении громкоговорителей на высоте 3 метра от пола с шагом 3 метра. Расчет сделан в треть-октавных полосах 10 кГц (нижняя диаграмма) и 400 Гц (верхняя диаграмма).

Рис. 6. Диаграмма звукового давления при расположении громкоговорителей на высоте 3 метра от пола с шагом 4,5 метра. Расчет сделан в треть-октавных полосах 10 кГц (нижняя диаграмма) и 400 Гц (верхняя диаграмма).

Шило или мыло?

Ну что ж, результат симуляции показал, что негативный для равномерности покрытия результат даёт как слишком большой шаг громкоговорителей, так и слишком малый. И как раз слишком малое расстояние является едва ли не более серьезной проблемой, ведь распространено заблуждение, что расположив акустические системы с минимальным шагом, мы получим равномерное покрытие по всей области частот. Для высокочастотной области этот тезис справедлив, поскольку любой громкоговоритель обладает более узкой диаграммой направленности в области высоких частот. А что касается некогерентного сложения волн, благодаря интерференции в области низких частот давление в точках пересечения лучей будет гарантированно больше, чем прямо под громкоговорителем, как бы парадоксально это не звучало. Более того, интерференционная картина будет меняться в каждой точке, и чем ближе друг к другу расположены громкоговорители, тем разительнее будут эти изменения. Так стоит ли равномерное покрытие в области высоких частот таких жертв? Не думаю.

Чтобы стало немного понятнее, внесу уточнения. Как известно, направленность волны зависит от её длины – длинные волны (частотой от 160 Гц и ниже) являются всенаправленными, т.е. угол раскрытия любого громкоговорителя на частоте, например, 80 Гц будет равен 360 градусам. В случае с потолочными системами, само собой, 180 градусов. А короткие волны обладают более узкой направленностью, что обусловлено физикой процесса распространения волн. Так, в октавной полосе 16 кГц средний потолочный громкоговоритель может иметь угол раскрытия (на -6 дБ) 45-60 градусов при паспортных номинальных 120 градусах, усредненных по диапазону 1 кГц-8 кГц. Получается, чтобы избежать «звуковых ям», расчет следует проводить, беря за основу именно характеристику раскрытия громкоговорителя на высоких частотах. Верно. Только не столь узконаправленные длинные волны будут создавать несравнимо большее давление, многократно складываться и вычитаться, создавая проиллюстрированные выше суммы и разности с тем большим разбросом давлений, чем ближе друг к другу расположены их источники.

На основании прочитанного Вы имеете полное право обвинить меня в том, что я не дал очевидного ответа, как же именно правильно располагать громкоговорители. Так и есть, но если бы однозначный ответ существовал, в наших услугах не было бы нужды и спроектировать звуковую систему смог бы любой. Именно в этом заключается мастерский, как сейчас его называют, «system design» — в нахождении компромиссного решения, в балансировке между взаимоисключающими требованиями и условиями.

А в остальном, прекрасная Маркиза, всё хорошо, всё хорошо!

Перфекционизм – не такая уж плохая черта, но иногда для продуктивной работы требуется достижимый ориентир. И он у нас тоже есть. В количественной оценке равномерности звукового поля неплохо помогает используемое в статистике т.н. Стандартное Отклонение (STDev). Не буду углубляться в объяснение этого понятия – велик шанс углубиться слишком сильно.

Рис. 7. Стандартное отклонение

Перед нами график распределения неких случайных величин в пределах стандартного отклонения от математического ожидания. Возьмем его за основу, используя в качестве величин распределение уровней звукового давления в помещении.

А теперь договоримся, что значение μ на горизонтальной шкале – это среднее значение уровня звукового давления по всему помещению, а именно — наше математическое ожидание. Значение σ берем за 2 дБ (-20% +25% по абсолютному значению), поскольку вероятный разброс величин относительно ожидаемого может быть различным. Теперь наша задача понять, какой разброс нас удовлетворит, а какой будет считаться неприемлемым. Если на всей измеряемой площади давление одинаковое, то график превратится в прямую линию. Чем больше разброс величин, тем более крутым будет подъем и спад графика данной функции. Так вот, при достаточно равномерном звуковом поле большинство величин сконцентрировано вблизи среднего значения. И этим достаточно равномерным покрытием мы можем считать зону в пределах 1го стандартного отклонения, т.е. если на 68% от всей площади помещения уровень давления колеблется в пределах +-2 дБ от среднего по полному частотному диапазону, то требование выполнено. Правда, увидеть подобную статистику распределения давлений можно лишь проведя акустический расчет.

Несмотря на то, что в стандартах ISO или AES такая интерпретация не зафиксирована, в практике она нередко применяется и в целом отражает реальность, поэтому может служить для Вас хорошим ориентиром и отправной точкой в определении равномерности покрытия площади.

Но не забывайте, что усредненное по всему диапазону значение не всегда описывает полную картину.

Чёрный ящик

Ну что ж, с потолочными громкоговорителями вроде бы разобрались, насколько это было возможно в этом формате. А как быть с настенными системами? Всё ли так просто с ними, как мы привыкли думать? В целом значительно проще просто потому, что, как правило, мы крайне ограничены в размещении корпусных акустических систем – стены, углы, колонны. И при том далеко не любая точка стены доступна под установку громкоговорителя – где-то дизайнерская лепнина, где-то телевизор, где-то вентиляция и так далее.

И одно дело, когда нужно озвучить 100 кв. метров – подобрал угол раскрытия, раскидал по углам 4 громкоговорителя, и всё, готова система – а как поступать с большей площадью? Ищем несущие колонны посреди помещения, радуемся их наличию и облепляем их громкоговорителями. Ну а что делать – вариантов-то нет. Согласен, но с уточнениями. За ответом, как обычно, стоит обратиться к науке.

Вот пример расположения акустических систем в помещении.

Рис. 8. Расположение настенных громкоговорителей на колоннах

Как вы навскидку оцените такой лэйаут?

В общем смысле всё хорошо, и при правильном выбор громкоговорителей и правильном монтаже проблем не будет. Забегая вперед, скажу, что все из представленных мной далее схем расположения имеют право на существование, но с некими оговорками.

В случае если громкоговорители полнодиапазонные, с раскрытием в сумасшедшие 150 градусов (и такое бывает), расположение их в непосредственной близости друг от друга создаст Вам очень интересную картину интерференции. Чтобы долго не разглагольствовать, в этот раз сразу продемонстрирую акустический расчет, поскольку что-то более наглядное и доступное для понимания придумать сложно.

Рис. 9. Диаграмма уровня звукового давления при расположении громкоговорителей на колоннах в октавной полосе с центром на 500 Гц

Обратите внимание на полученные «лепестки» — это как раз и есть результат сложения и вычитания двух когерентных волн, и расположение их, конечно же, меняется в зависимости от длины волны. Ту же самую картину можно наблюдать при расположении громкоговорителей в кластерах – для правильного сложения волн нужно принимать ряд мер как при проектировании, так и при настройке, но это уже совсем другая история. На всякий случай я обозначу одно очевидное следствие этого факта: в результате интерференции тембр звуковой программы может быть серьезно искажен из-за вычитания некоторых частотных составляющих. Многие специалисты к несчастью, уверены, что любые тембральные искажения исправляются с помощью измерительного микрофона, спектроанализатора и эквалайзера, и искренне удивляются, пытаясь при настройке АЧХ системы «вытянуть» потерянную при интерференции частоту. А на графике ничего не происходит, сколько ни увеличивай гейн фильтра – на +6 дБ, на +12 дБ, да хоть два эквалайзера последовательно включи. Давление на этой частоте просто отсутствует, и взяться ему неоткуда, если в силу одной из множества причин в этом диапазоне произошло вычитание волн.

А теперь возьмем и попробуем избавиться от этих проблем, да еще и удешевим систему, уменьшив количество громкоговорителей.

Рис. 10. Расположение настенных громкоговорителей на колоннах

Рис. 11. Диаграмма уровня звукового давления при расположении громкоговорителей на колоннах в полном частотном диапазоне.

Получается вполне прилично: интерференционные проблемы решены, покрытие в зоне между колоннами близко к идеальному, когерентное сложение волн тоже не критично. В качестве бюджетного варианта такой дизайн вполне жизнеспособен – главное, чтобы шаг колонн позволил Вам уложиться в стандартное отклонение. Но некий нюанс всё же есть. И корень его закопан глубоко в фундаментальной науке.

Благодаря физиологии слуха и, вероятно, эволюции человек способен локализовывать звуковые события, т.е. определять, откуда прибыла звуковая волна – эту способность просто необходимо было выработать для выживания. А как быть когда звуковых волн много, как, например, в первобытной пещере, где помимо прямого звука от источника существует бесчисленное количество отражений, прибывающих со всех сторон? Очень просто. Достаточно было выработать способность определять направление первой волны, которая однозначно по кратчайшему пути прибудет непосредственно из условной пасти хищника, а любое отражение точно пройдёт больший путь и придёт с неким опозданием. Это явление описывает Закон первого волнового фронта (он же Precedence Effect). При наличии нескольких идентичных волн, приходящих с задержкой, мозг определяет направление исключительно по первой волне, даже если вторая и последующие имеет более высокий уровень (превышение до 10 дБ) и приходит с запаздыванием до 30 мс. Подробнее об этом занимательном эффекте и его описании можно прочитать в литературе по психоакустике.

Так к чему всё это? Теперь давайте смоделируем слушателя, движущегося по длине помещения по прямой траектории, и проследим, как для него будет меняться локализация звука. В процессе движения мимо первого громкоговорителя человек будет четко слышать звук слева, по мере его приближения к условной границе раскрытия соотношение интенсивностей волн слева и справа изменяется, поскольку в поле зрения появляется второй громкоговоритель. Наш объект достиг точки равного расстояния между громкоговорителями и обе волны когерентно сложились, дав ему +3 дБ к уровню давления, а локализация звука мгновенно перескочила в точку равного расстояния между источниками, т.е. как раз в то место, где находится в данный момент голова объекта. А следующий же шаг резко сместит звуковое событие вправо, поскольку волна от второго источника теперь будет приходить первой.

В принципе, ничего критичного в этом нет. Но если предполагаются постоянные перемещения клиентов по площади, как, например, в магазине, будет ли им комфортно слушать скачущий из точки в точку звук? Далеко не каждый слушатель анализирует причины своего дискомфорта и связывает их со звуком, восприятие окружения для него складывается несознательно и состоит из совокупности всех ощущений – визуального, аудиального, тактильного и остальных. И достаточно, чтобы хотя бы одно из них вызывало дискомфорт, чтобы остальные оказались незначительными, а субъективное впечатление было испорчено.

На финишной прямой

Пожалуй, основные вопросы расчета расположения громкоговорителей, были рассмотрены, однако будет не совсем честно с моей стороны не упомянуть о том, что почти все эти расчеты учитывают энергию прямой волны от излучателя. А в условиях реальных помещений, наполняемых не только прямым звуком, но и многочисленными отражениями, интерференционные вычитания, конечно, не будут создавать точки с нулевым звуковым давлением. Отраженные волны будут несколько нивелировать провалы и подъемы, само собой, не избавляя от них полностью, и значительно улучшать равномерность покрытия, компенсируя собой недостаток прямого звука в удаленных от его источника точках.

Кстати, один из интересных методов создания нелокализуемого фонового звучания системы основан на использовании реверберации помещения на пользу фоновому звуку. Заключается он в расположении всех акустических систем «лицом» в потолок. Такое расположение практически полностью избавляет слушателя от прямого звука из громкоговорителя, вся энергия, получаемая им, – это множество отраженных волн со всех направлений. Крайне интересный получается эффект в плане пространственности звучания. Единственный минус такого решения – ограничение по контенту. Быстрая поп или рок музыка, не рассчитанная на столь серьезное влияние реверберации, вряд ли прозвучит хорошо из такой системы.

P.S. А что, без кабеля не запоёт?

Несмотря на кажущуюся второстепенность вопроса о кабельных трассах, трудно переоценить важность спикерного (акустического) кабеля для любой звуковой системы. Говорю об этом с полной уверенностью, поскольку, к сожалению, в моей практике не всегда имеется возможность диктовать клиенту, какой кабель ему закупить, и это иногда приводит к немым сценам в стиле чеховского Ревизора, когда на объекте узнаётся, что для звуковой системы был проложен кабель ШВВП. В ответ на свой вопрос я получаю вполне резонный ответ – «А что, работает же!». Работает. Только так работает, что лучше б не работало. В общем, вы понимаете…

И именно поэтому привожу методику расчета сечения кабеля. Те из Вас, для кого она очевидна, и кто прекрасно знает, как делаются такие расчеты, могут смело пропускать эту часть статьи – ничего нового и доселе науке неизвестного я не приведу. А вот если вдруг Вы впервые столкнулись с необходимостью расчета, то эта информация будет полезна ввиду её прикладной применимости.

Итак, раз уж я решил описать методику расчета, несмотря на то, что статья посвящена распределенным системам, начну с низкоомных систем, поскольку отличий в способах расчета мало.

Расчет падения уровня мощности:
, где
– номинальный импеданс громкоговорителя [Ом]
– длина линии усилитель – громкоговоритель [м]
– сопротивление кабеля [Ом/км]

Расчет демпинга кабеля:

, где
– номинальный импеданс громкоговорителя [Ом]
– длина линии усилитель – громкоговоритель [м]
– сопротивление кабеля [Ом/км]

Расчет эффективного тока:

Расчет эффективной мощности, выделяемой на нагрузке:

Расчет суммарного сопротивления громкоговорителей в линии:
,где

— количество громкоговорителей на линии
– номинальная мощность одного громкоговорителя (Tap setting)

Остальные расчеты выполняются аналогично низкоомным линиям.

Суммарное сопротивление нагрузки в 100-вольтовой линии, как можно заметить, обычно получается не менее 1000 Ом. При таком высоком сопротивлении единицы Ом сопротивления кабеля незначительно влияют на общее сопротивление линии, и, следовательно, увеличивают потери мощности незначительно по сравнению с низкоомным подключением.

Теперь немного об интерпретации результатов. Как определить, какая потеря мощности является допустимой? В общем случае пороговым значением падения уровня мощности на кабеле принято считать 0,5 дБ. Это соответствует потере в 10% относительно номинальной мощности. Например, для 8-омного громкоговорителя допустимым номиналом в 1 кВт предельного по этим нормам падения мощность достигает на линии сечением 2.5 кв.мм длиной в 30 метров. Много это или мало, конечно, решать Вам, и решение тут зависит от конкретной ситуации, но практика показывает, что увеличение сечения кабеля с 2.5 кв.мм до, например, 4 кв.мм существенно не повысит стоимость инсталляции. Поэтому я всегда рекомендую укладываться в 0,5 дБ, ведь это совершенно не трудно сделать. Да и зачем нам терять на линии драгоценные Ватты, когда мы имеем возможность добиться максимальной эффективности системы?

И, несмотря на то, что к трансляционным линиям требования существенно ниже, использование правильного кабеля поможет Вам заставить систему работать эффективнее. Более того, если в Вашей практике Вы не проводили экспериментов по оценке качества звука на разных кабелях (при прочих равных), то поверьте мне на слово, влияние сечения кабеля на звучание действительно заметно на слух. Особенно это касается низкочастотной области – диапазона, при передаче которого развивается наибольшая мощность, и который наиболее требователен к току и демпинг-фактору.

Поэтому, используя так любимую многими аналогию, давайте не будем заливать в Мерседес S-класса 92-ой бензин, а потом удивляться, почему не достигается заявленная производительность.

Как можно заметить по формулам, единственная величина, которая остается неизвестной для расчета кабеля – это его сопротивление, выраженное в Ом/км. Его значение можно найти в спецификации к кабелю. Для этого придется сначала выбрать сечение кабеля навскидку, взять соответствующее значение сопротивления, подставить в формулу и провести расчет. В случае, если Вы получите превышение падения мощности, или наоборот, сечение окажется избыточным, то придется выбрать кабель другого сечения и вернуться к исходной точке расчета. Начинать расчет я обычно рекомендую с сечения 2х2.5 кв.мм (7,5-8 Ом/км) для низкоомных линий и 2х1.5 кв.мм (около 13 Ом/км) для трансформаторных линий. Конечно, это заставит Вас потратить некоторое время на расчет, но для удобства Вы можете создать себе калькулятор в Excel, внеся туда формулы и значения сопротивлений кабелей разного сечения – это займет некоторое время разово, зато избавит от необходимости ручного расчета в дальнейшем.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *